1. 每瓶接种 5x10 6 个 SF9 细胞,另留一个瓶作为阴性对照。2. 按照 A 部分中概述的方法,使用以下体积和量:10uL 杆状病毒 DNA(0.1ug/uL)2ug 质粒 DNA 1mL 转染缓冲液 B 5mL 未添加的 Grace 培养基洗涤液 1mL 转染缓冲液 A 5mL 未添加的 Grace 培养基洗涤液 7mL TMN/FH
癌症治疗的合成致死策略利用癌症特异性基因缺陷来识别对肿瘤细胞存活至关重要的靶点。本文我们表明,RAD27/FEN1 编码瓣状内切酶 1 (FEN1),这是一种在 DNA 复制和修复中发挥作用的结构特异性核酸酶,与酿酒酵母基因组不稳定性基因具有最多的合成致死相互作用,是基于抑制剂的方法杀死同源重组 (HR) 缺陷癌症的可用药物靶点。研究表明,小分子 FEN1 抑制剂和 FEN1 小干扰 RNA (siRNA) 可选择性杀死 BRCA1 和 BRCA2 缺陷的人类细胞系,从而证实了 HR 缺陷癌症容易受到 FEN1 缺失的影响。此外,在小鼠中重现了对 FEN1 抑制的不同敏感性,小分子 FEN1 抑制剂降低了药物敏感但无耐药性癌细胞系中形成的肿瘤的生长。FEN1 抑制在敏感和耐药细胞系中均诱导了 DNA 损伤反应;然而,即使去除抑制剂,敏感细胞系也无法恢复和复制 DNA。尽管 FEN1 抑制在敏感细胞中将 caspase 激活到更高水平,但这种凋亡反应发生在 p53 缺陷细胞中,而泛 caspase 抑制剂无法阻断细胞杀伤。这些结果表明,FEN1 抑制剂具有治疗靶向 HR 缺陷癌症的潜力,例如由 BRCA1 和 BRCA2 突变和其他遗传缺陷引起的癌症。
GSK864(IDH1I)和DNA破坏特工Olaparib(OLAP)或顺铂(CIS)单独或合并。%,并将其标准化为对照。d)在谷氨酰胺饥饿的条件下培养了指定的CCNE1-低(橙色)和 - 高(紫色)同源细胞,并单独或单独或单独或合并用DNA损害剂Olaparib(OLAP)或顺铂(Cisplatin(Cis)处理。%的细胞,并将其标准化为媒介物对照。e)将IP基因细胞注射到免疫功能低下的雌性小鼠(n = 8/组)中。表达空载体(ev)=橙色的单元格;表达CCNE1(CCNE1)=紫色的细胞。单独或组合使用媒介物,IDH1抑制剂GSK864(IDH1I)和Olaparib(OLAP)处理小鼠。在端点,通过计算腹膜肿瘤结节来计算肿瘤负担。f)仅用IDH1抑制剂GSK864(IDH1I)处理指示的CCNE1高细胞,单独使用DNA破坏药物Olaparib(OLAP)或顺铂(CIS)(CIS)(cis)(黄色)(黄色)(黄色)(黄色),并与细胞渗透性的A kg(绿色)或柠檬酸盐(蓝色)结合使用。%,并将其标准化为对照。g)在谷氨酰胺饥饿条件下培养了指定的CCNE1高细胞,并用DNA损伤剂Olaparib(OLAP)或顺铂(CIS)(CIS)(CIS)(黄色)和可渗透的细胞渗透kg(绿色)处理。%的细胞,并将其标准化为媒介物对照。h)依赖性二氧酶CRISPR KO屏幕的示意图。i)CRISPR KO屏幕的分析。所有图表示平均值±SD。显示为Log2折叠分数(CCNE1 + Olaparib vs. CCNE1)与(EV + Olaparib vs.EV)中的负分数的变化。J)在两个CCNE1高细胞系中5个负富集基因的Venn图。k)用SHGFP(Shcont-紫色)或两个靶向TMLHE的独立shRNA(SHTMLHE#1-浅蓝色,浅蓝色,SHTMLHE#2-深蓝色)转导指示的CCNE1高细胞,并用DNA损害剂Olaparib(Olap)用Cell-Cell-clip-carn的dna损害剂处理(la)或l-CARNIT(l-CARNIT)。%的细胞,并将其标准化为媒介物对照。l)单独使用肉碱合成抑制剂(Mildro)或单独使用DNA损伤剂Olaparib(OLAP)(紫色)和组合(黄色)处理指示的CCNE1高细胞。组合处理的细胞用可渗透的细胞A kg(绿色)或L- carnitine(L-Carn; Maroon)补充。%的细胞,并将其标准化为媒介物对照。m)用IDH1抑制剂GSK864(IDH1I)和单独的DNA损伤剂Olaparib(OLAP)(紫色)和组合(黄色)处理指示的CCNE1高细胞。组合处理的细胞用L-肉碱(L-Carn; Maroon)补充。%的细胞,并将其标准化为媒介物对照。n)在谷氨酰胺饥饿条件下(紫色)培养指示的CCNE1-高细胞,并单独用DNA损伤剂Olaparib(OLAP)(黄色)或补充L-Carnitine(L-Carn; Ma-Roon)。%,并将其标准化为对照。**** p <0.005,ns =不显着o)kg是tmlhe和carnitine上游的示意图。(A-D,F)显示的是来自每个等源性细胞系对中至少3个独立实验的代表性数据。(G,K-N)是来自每个等源性细胞系对中2个独立实验的代表性数据。
•KSQ-4279是一种可逆的,具有ki = 1.2nm的USP1的变构抑制剂•ksq-4279绑定和未结合的USP1结构均已解决,揭示了诱导的拟合机构
帕金森病 (PD) 是一种常见且使人衰弱的神经退行性疾病,其源于多巴胺能神经元的损失,并伴有进行性运动功能障碍。神经胶质细胞衍生的神经营养因子 (GDNF) 在治疗 PD 和其他神经病方面非常有前景。在本研究中,我们应用 CRISPR/Cas9 技术开发了一种基因靶向敲入系统,用于在牛 β-酪蛋白基因位点表达人类 gdnf 基因。构建了 CRISPR/Cas9 表达质粒和 pP40-GN 载体。使用组织外植体法培养和收集牛胎儿成纤维细胞。然后将 pP40-GN 和 CRISPR/Cas9 载体电转染到牛胎儿成纤维细胞中。使用 G418 筛选抗性克隆,同时通过 PCR 分析和 PCR 产物测序鉴定目标克隆。采用耳组织阻断法成功分离培养牛胎儿成纤维细胞,将pP40-GN靶载体和CRISPR/Cas9表达载体共转染牛胎儿成纤维细胞,经7天G418筛选,共获得12个健康、分离良好的细胞克隆,其中5个发生基因打靶事件。本研究为利用基因打靶牛乳腺生物反应器生产人GDNF蛋白奠定了基础,为PD的靶向治疗提供了新的策略。
基因编辑是一种尖端技术,正在迅速重塑生物技术,医学和农业学科。遗传构成的精确改变需要在感兴趣的区域引入DNA病变,并利用DNA损伤响应和同源驱动的修复机制。DNA容易受到各种生理和病理因素的每日损害[1],导致DNA双链断裂(DSB)或单链断裂(SSB或Nick)可能会触发基因组恢复,如果未经修复或不正确地修复时[2]。这些事件可以触发下游过程,例如致癌或程序性细胞死亡[3]。为维持基因组完整性,维修机制网络已经发展,它们的激活是由内源性或外源性应激引起的DNA损伤类型决定的。基因编辑技术利用了此内在修复网络的功能来重写DNA。四个主要的编辑平台包括巨型核酸酶,锌纤维核酸酶(ZFN),转录激活剂样效应核酸酶(TALENS)和定期插入的短短圆锥形重复序列(CRISPR)。天然巨核触发了DNA损伤,但需要独特的识别序列才能进行动作,这使得很难找到目标区域特异性的endonucle-Ases [4]。重新设计核酸酶的努力导致了替代方案的发展,例如ZFNS和TALES,其中DNA结合结构融合到了FOKI限制酶的裂解结构域。这种大大改善了人类细胞和动物模型中的基因编辑,从而促进了基因编辑的治疗应用[5-8]。然而,可行性问题仍然无法解决,因为这些人工核酸酶除了随机的脱靶诱变外,还需要蛋白质工程的目标序列,这使整个过程中的目标序列的每一个变化都使整个过程都易于努力且昂贵[9]。包装和大型核酸酶的包装和交付也很困难,进一步限制了体内应用[7]。另一方面,CRISPR技术在编辑方式上具有非常重要的优势,因为它克服了每个新目标站点对蛋白质工程的需求,从而使其易于重编程[4]。但是,由于CRISPR会产生非专业的DSB,可以介绍 -
细菌染色体和细菌质粒可通过同源重组在体内进行改造,使用 PCR 产物和合成寡核苷酸作为底物。这是可能的,因为噬菌体编码的重组蛋白可以有效地重新组合同源序列,这些序列短至 35 到 50 个碱基。重组允许插入或删除 DNA 序列,而不考虑限制位点的位置。本单元首先描述了表达重组功能的电转化感受态细胞的制备及其用 dsDNA 或 ssDNA 的转化。然后,它介绍了支持协议,这些协议描述了几种两步选择/反选择方法,这些方法可以在不留下目标 DNA 中任何不必要的变化的情况下进行遗传改变,以及一种从大肠杆菌染色体或共电穿孔 DNA 片段中将遗传标记(通过检索进行克隆)检索到质粒上的方法。附加方案描述了筛选未选择突变的方法、从重组菌株中去除有缺陷的原噬菌体的方法和其他有用的技术。Curr. Protoc. Mol. Biol. 106:1.16.1-1.16.39。C 2014 by John Wiley & Sons, Inc.
PDAC 肿瘤的基因组测序研究表明,高达 15% (4) 的肿瘤存在缺陷,由于 DNA 修复缺陷而导致基因组不稳定 (5)。DNA 修复途径对于保护细胞免受外源性和内源性 DNA 损伤至关重要。这些途径在癌细胞中经常出现功能障碍,导致 DNA 损伤积累和基因组不稳定 (6)。同源重组缺陷 (HRD) 是一种复杂而动态的肿瘤表型,其特征是无法通过同源重组修复 DNA 中的双链断裂 (DSB)。另一个高度保守的 DNA 修复过程是涉及单链 DNA 断裂的碱基切除修复途径。聚 (ADP-核糖) 聚合酶 (PARP) 酶是该途径的关键元素。约 5–8% 的 PDAC 与 BRCA1/2 致病性种系变异有关,导致 BRCA 功能缺陷,因此更依赖 PARP 进行 DNA 修复;如果这些患者对含铂化疗的一线治疗有反应,他们可以从 PARP 抑制剂的维持治疗中受益 (7)。在此,我们根据叙述性综述报告清单(可访问 https://jgo.amegroups.com/article/view/10.21037/jgo-23-85/rc)对 PDAC 中的 HRD 进行了综述。
CRISPR–Cas9 通过产生 DNA 双链断裂 (DSB) 并随后激活细胞 DNA 修复途径实现基因编辑。根据所参与的修复途径,结果可能包括目标基因的破坏或用恢复或引入功能的新序列替换 1 。后一种基因替换事件需要传递编码新序列的模板 DNA,其水平应支持基因替换,但不会对细胞活力产生不利影响。在转化应用中,模板分子通常由病毒载体递送。虽然有效,但病毒工作流程成本高昂、难以扩大规模且对细胞有潜在毒性。因此,使用非病毒模板 DNA 是一种有吸引力的替代方案,但非病毒模板的效率和急性毒性可能不如病毒递送 2 。改进的非病毒基因编辑将成为揭示 DNA 修复机制的有力方法、有用的实验室技术和治疗多种疾病的有前途的策略 3 。一种高效的非病毒基因编辑策略是传递核糖核蛋白(RNP)制剂,包括靶向核酸酶Cas9、单向导RNA(sgRNA)和模板分子,该模板分子包含与被编辑区域以及要修改或插入的序列的同源性4。这些RNP在基因组的目标区域引入DSB,然后通过易错末端连接(EJ)过程修复断裂末端,或通过同源性定向修复(HDR)过程修复DSB,该过程使用单独模板分子1中编码的序列解决DSB(扩展数据图1a)。使用HDR将新的DNA序列引入目标位置可以实现令人兴奋的功能获得应用5。因此,增加HDR频率的策略可能会改善结果并降低实验室和生物医学工作流程的成本。
CRISPR / Cas12a 是一种单效应核酸酶,与 CRISPR / Cas9 一样,由于其能够产生靶向 DNA 双链断裂 (DSB) 而被用于基因组编辑。与 Cas9 产生的平端 DSB 不同,Cas12a 产生的粘性末端 DSB 可能有助于精确的基因组编辑,但这一独特功能迄今为止尚未得到充分利用。在当前的研究中,我们发现,短双链 DNA (dsDNA) 修复模板包含一个与 Cas12a 产生的 DSB 末端之一匹配的粘性末端和一个与 DSB 另一端相邻的基因组区域具有同源性的同源臂,能够精确修复 DSB 并引入所需的核苷酸替换。我们将这种策略称为“连接辅助同源重组”(LAHR)。与单链寡脱氧核糖核苷酸 (ssODN) 介导的同源定向修复 (HDR) 相比,LAHR 的编辑效率相对较高,这在报告基因和内源基因中均有体现。我们发现 HDR 和微同源介导的末端连接 (MMEJ) 机制都参与了 LAHR 过程。我们的 LAHR 基因组编辑策略扩展了基因组编辑技术的范围,并更广泛地了解了基因组编辑中涉及的 DNA 修复机制的类型和作用。
