与癌症易感性和肿瘤发生相关的 DDR 基因的发现迫使 NGS 面板扩展个性化方法,以超越 BRCAness(即 BRCA1/2 基因)的范畴。然而,仅仅试图扩展 DDR 基因面板也有局限性。首先,尚不清楚低频突变的 DDR 基因(甚至是变体)是否真的是肿瘤发生的驱动改变。不幸的是,在许多情况下,包括 BRCA1/2 突变肿瘤在内,在特定肿瘤类型中发现的突变频率可能与更常见的癌症驱动基因(例如 Kras 或 TP53 )相比非常低,因此很难判断这些事件是否在给定的患者群中经常被选择。根据传统癌症遗传学的中心法则,某种肿瘤类型的突变频率必须高于健康对照群体的预期 (7)。其他复杂层面包括这些 DDR 相关基因是否具有与 BRCA1/2 等已建立的 DDR 基因相同的致命弱点(也称为合成致死性),以及这些基因是否符合经典的肿瘤抑制规则,即需要在肿瘤中丢失第二个等位基因(例如杂合性缺失,LOH)(7)。因此,在许多 DDR 基因中,尚不清楚这些 DDR 缺陷基因是否具有预测治疗价值。基于这些问题,许多研究人员试图设计检测分子特征的检测方法,以识别具有缺陷 DDR 通路的肿瘤(即 HRD,见下文)。
重量是药物毒性和副作用的敏感指数,还使用电子量表来监测裸鼠体重的变化。每3天称重裸小鼠,并绘制裸鼠重量变化的时间曲线。在上述治疗结束后,用麻醉对裸鼠进行安乐死,然后使用4%多甲醛的组织固定溶液将肿瘤,心脏,肝脏,脾脏,肺,肺和肾脏剥离并固定24小时。收集裸鼠的肿瘤和器官组织,并染色苏木精和曙红(H&E),以观察任何组织病理学变化。收集裸鼠的血液进行血液学和生化分析。使用丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)评估血清肝功能,而肾功能是通过
转移性去势抵抗性前列腺癌 (mCRPC) 患者的平均生存期仅为 13 个月。在多达四分之一的 mCRPC 患者中,同源重组修复 (HRR) 通路中发现了新的可预测和可操作的生物标志物,这促使多聚 ADP 核糖聚合酶抑制剂 (PARPi) 等靶向疗法获得批准,有可能改善生存结果。PARPi 的批准促使美国国家综合癌症网络 (NCCN) 等指导机构积极推荐进行种系和/或体细胞 HRR 基因组测试,以确定哪些患者将受益于 PARPi。然而,由于基因检测仍处于早期阶段,尤其是在低收入和中等收入国家,成本和可用性是主要障碍,因此存在一些挑战。此外,还存在一些问题,例如选择最佳组织进行基因检测、存档、储存、检索组织块、解释和分类 HRR 通路中的变异,以及测试前和测试后的遗传咨询的必要性。本综述深入分析了 mCRPC 中普遍存在的 HRR 基因突变以及更广泛的基因检测所面临的挑战,以识别 HRR 通路中可操作的种系致病变异和体细胞突变,并提出了一种临床算法来提高基因检测过程的效率。
事实证明,CRISPR/Cas9 细菌系统是多种生物体中基因操作的有力工具,但同源直接修复 (HDR) 序列替换的效率远低于随机插入/缺失创建。许多研究集中于使用双 sgRNA、细胞同步化循环和合理设计的单链寡 DNA 核苷酸 (ssODN) 递送来提高 HDR 效率。在本研究中,我们评估了这三种方法在提高 HDR 效率方面的协同作用。我们选择了 TNF α 基因 (NM_000594) 进行测试,因为它在各种生物过程和疾病中起着至关重要的作用。我们的结果首次展示了使用两个具有不对称供体设计和三重转染事件如何显著提高 HDR 效率,从不可检测的 HDR 事件提高到 39% 的 HDR 效率,并提供了一种促进 CRISPR/Cas9 介导的人类基因组编辑的新策略。此外,我们证明了可以使用 CRISPR/Cas9 方法编辑 TNF α 基因座,这是一个在未来安全地纠正每位患者的特定突变的机会。
Highly efficient CRISPR-mediated homologous recombination via 1 NHEJ deficiency rather than HDR factors overexpression in Populus 2 3 Ali Movahedi 1§* , Hui Wei 1§ , Zhong-Hua Chen 2 , Weibo Sun 1 , Jiaxin Zhang 3 , Dawei Li 1 , Liming 4 Yang 1* , and Qiang Zhuge 1* 5 6 1 College of Biology and the Environment,中国南部7号的可持续林业共同创新中心,森林遗传学与生物技术主要实验室,教育部,南京林业大学8号,南京210037,210037,9 2霍克斯伯里环境学院,霍克斯伯里环境学院,西悉尼悉尼大学,10佩里斯大学,新南威尔士州佩里斯2751,新南威尔士州2751,澳大利亚11 3 n and NANJ and nanj andial andical Instriciting andical Sciention and nan Junan Junlan andical Instriciting Synormitics Squartring Synormitics Squarnion,NAN NAN NAN NAN NAN SACEITIC 210046,中国13 14 15 *应将信件发送给Qiang Zhuge,Ali Movahedi和Liming Yang:生物学与环境学院16,南部17中国可持续林业中心共同创新中心,中国森林遗传学与生物技术的主要实验室,教育部,Nanjing 18 Forestry University,Nanjing 18 Forestry University,Nanjing University,Nanjing University,Nanjing 210037。电子邮件:qzhuge@njfu.edu.cn; 19 ali_movahedi@njfu.edu.cn; yangliming@njfu.edu.cn;传真:+86 25 85428701 20 21§这些作者同样作为第一作者22 23 22 23 24跑步标题:高效通过XRCC4 Poplar中的XRCC4缺乏效率25 26 26 27 27 27 27 28 29 28 29 30 31 32 33 33 34 35 33 35 36 37 37 38 39 39 38 39 38 39 39 38 39 38 39 38 39 38 39电子邮件:qzhuge@njfu.edu.cn; 19 ali_movahedi@njfu.edu.cn; yangliming@njfu.edu.cn;传真:+86 25 85428701 20 21§这些作者同样作为第一作者22 23 22 23 24跑步标题:高效通过XRCC4 Poplar中的XRCC4缺乏效率25 26 26 27 27 27 27 28 29 28 29 30 31 32 33 33 34 35 33 35 36 37 37 38 39 39 38 39 38 39 39 38 39 38 39 38 39 38 39
癌症治疗的合成致死策略利用癌症特异性基因缺陷来识别对肿瘤细胞存活至关重要的靶点。本文我们表明,RAD27/FEN1 编码瓣状内切酶 1 (FEN1),这是一种在 DNA 复制和修复中发挥作用的结构特异性核酸酶,与酿酒酵母基因组不稳定性基因具有最多的合成致死相互作用,是基于抑制剂的方法杀死同源重组 (HR) 缺陷癌症的可用药物靶点。研究表明,小分子 FEN1 抑制剂和 FEN1 小干扰 RNA (siRNA) 可选择性杀死 BRCA1 和 BRCA2 缺陷的人类细胞系,从而证实了 HR 缺陷癌症容易受到 FEN1 缺失的影响。此外,在小鼠中重现了对 FEN1 抑制的不同敏感性,小分子 FEN1 抑制剂降低了药物敏感但无耐药性癌细胞系中形成的肿瘤的生长。FEN1 抑制在敏感和耐药细胞系中均诱导了 DNA 损伤反应;然而,即使去除抑制剂,敏感细胞系也无法恢复和复制 DNA。尽管 FEN1 抑制在敏感细胞中将 caspase 激活到更高水平,但这种凋亡反应发生在 p53 缺陷细胞中,而泛 caspase 抑制剂无法阻断细胞杀伤。这些结果表明,FEN1 抑制剂具有治疗靶向 HR 缺陷癌症的潜力,例如由 BRCA1 和 BRCA2 突变和其他遗传缺陷引起的癌症。
背景:CRISPR/Cas 和 TALEN 技术的进步激发了人们对植物基因编辑机会的兴奋。CRISPR/Cas 被广泛用于通过诱导靶向双链断裂 (DSB) 来敲除或修改基因,而双链断裂主要通过易出错的非同源末端连接或微同源介导的末端连接进行修复,从而导致可能改变或消除基因功能的突变。尽管此类突变是随机的,但它们发生的频率足以使有用的突变能够通过筛选定期识别。相比之下,用替代等位基因或具有特定特征修饰的拷贝替换整个基因的基因敲入目前还不常见。通过同源定向修复进行基因替换(或基因靶向)在高等植物中发生的频率极低,使得筛选有用事件变得不可行。通过抑制非同源末端连接和/或刺激同源重组 (HR) 可以增加同源定向修复。在这里,我们通过评估多种异源重组酶表达对烟草植物染色体内同源重组 (ICR) 的影响,为提高基因置换效率铺平了道路。结果:我们在含有高度敏感的 β -葡糖醛酸酶 (GUS) 型 ICR 底物的烟草转基因系中以不同的组合表达了几种细菌和人类重组酶。使用病毒 2A 翻译重编码系统实现了多种重组酶的协调同时表达。我们发现大多数重组酶在花粉中显著增加了 ICR,其中 HR 将由减数分裂期间发生的程序化 DSB 促进。DMC1 表达在初级转化体中产生了对 ICR 的最大刺激,其中一种植物的 ICR 频率增加了 1000 倍。对纯合 T2 植物系中的 ICR 的评估表明,ICR 增加了 2 倍到 380 倍,具体取决于表达的重组酶。相比之下,营养组织中的 ICR 仅适度增加,异源重组酶的组成性表达也降低了植物的育性。结论:异源重组酶的表达可以大大增加植物生殖组织中 HR 的频率。将此类重组酶表达与使用 CRISPR/Cas9 诱导 DSB 相结合可能是从根本上提高植物基因替换效率的途径。
同源重组 (HR) 与基因组复制有着密切的关系,无论是在修复可能阻止 DNA 合成的 DNA 损伤期间,还是在解决复制叉停滞时。最近的研究让我们想知道 HR 是否在复制真核寄生虫利什曼原虫的基因组中发挥着更为核心的作用。关于 HR 基因是否必需,出现了相互矛盾的证据,而全基因组图谱为 DNA 复制起始位点(称为起源)的非正统组织提供了证据。为了回答这个问题,我们采用了 CRISPR/Cas9 和 DiCre 的组合方法来快速生成和评估利什曼原虫中 RAD51 和三种 RAD51 相关蛋白的条件性消融的影响。使用这种方法,我们证明任何这些 HR 因子的丧失都不会立即致命,但在每种情况下,生长都会随着时间的推移而减慢,并导致 DNA 损伤和具有异常 DNA 含量的细胞的积累。尽管存在这些相似之处,但我们表明,只有 RAD51 或 RAD51-3 的缺失才会损害 DNA 合成并导致全基因组突变水平升高。此外,我们还表明这两个 HR 因子的作用方式不同,因为 RAD51 的消融(而不是 RAD51-3)对 DNA 复制有重大影响,导致主要起点处的起始丧失和亚端粒处 DNA 合成增加。我们的工作澄清了有关 HR 对利什曼原虫生存的重要性的问题,并揭示了 RAD51 在微生物真核生物基因组复制程序中意想不到的核心作用。
吲哚-3-乙酰胺 (IAM) 是某些植物病原菌中第一个被证实的生长素生物合成中间体。外源施用 IAM 或通过过表达拟南芥中的细菌 iaaM 基因产生 IAM 会导致生长素过量产生表型。然而,植物是否使用 IAM 作为生长素生物合成的关键前体仍不确定。在此,我们报告了从正向遗传筛选中分离拟南芥中的 IAM 水解酶 1 (IAMH1) 基因,该筛选用于显示正常生长素敏感性的 IAM 不敏感突变体。IAMH1 有一个相近的同源物,名为 IAMH2,位于拟南芥 IV 染色体上 IAMH1 的旁边。我们使用我们的 CRISPR/Cas9 基因编辑技术生成了 iamh1 iamh2 双突变体。我们发现,IAMH 基因的破坏使拟南芥植物对 IAM 处理产生抗性,同时也抑制了 iaaM 过表达表型,这表明 IAMH1 和 IAMH2 是拟南芥中将 IAM 转化为 IAA 的主要酶。iamh 双突变体没有表现出明显的发育缺陷,这表明 IAM 在正常生长条件下在生长素生物合成中不起主要作用。我们的研究结果为阐明 IAM 在生长素生物合成和植物发育中的作用奠定了坚实的基础。