0.1 最小重量 为了生存,大自然学会了用最少的物质资源生产出极其高效的结构。在这种情况下,效率是对生物体的结构、形式和目的之间相互依存关系的发达认识。对最小重量的需求因生物体的功能和环境而异。空中结构出于需要,已将其结构系统的重量降至最低;相比之下,水生生物仅受重力的影响很小。例如,鲸鱼比任何陆地动物都大得多,它之所以能达到这个大小,只是因为它的身体密度与周围的海水介质相似。一旦在陆地上受到全部重力,鲸鱼就有因自身重量而倒下的危险。在自然界中,有一件事是肯定的,那就是只要重量可以最小化,它就会对新陈代谢有利。
最新的性能。虽然鉴定的视觉模型(例如对比语言图像预训练(剪辑))通过在共同空间中学习视觉语言概念来实现有希望的零射击性能,但它们之间的自然层次结构仍然没有探索。在这项工作中,我们提出了Poinclip:基于庞加利的几何形状模型,该模型研究了两者之间的层次关系,以学习联合文本图像表示。我们将Poinclip的性能与夹模型的性能进行比较,以进行零拍图像分类和检索任务,以证明所提出的方法的功效。
基线。我们主要与 CLIP(Radford 等人,2021 年)进行比较,后者在欧几里得空间中的单位超球面上嵌入图像和文本。CLIP 使用 4 亿个图像-文本对的私有数据集进行训练。一些后续工作重新实现了 CLIP 并使用可公开访问的数据集,如 YFCC(Thomee 等人,2016 年)、概念标题(Changpinyo 等人,2021 年;Sharma 等人,2018 年)和 LAION(Schuhmann 等人,2021 年;2022 年);值得注意的例子是 OpenCLIP(Ilharco 等人,2021 年)、SLIP(Mu 等人,2022 年)、DeCLIP(Li 等人,2022 年)和 FILIP(Yao 等人,2022 年)。我们开发了 CLIP 基线并使用单个公共数据集 RedCaps(Desai 等人,2021 年)对其进行训练,以便于重现。我们最小的模型使用 8 × V100 GPU 在不到一天的时间内进行训练,并且明显优于最近使用 YFCC(Mu 等人,2022 年)的 CLIP 重新实现。
随着机器学习技术和应用的爆炸性增长,具有转移功率的新范式和模型正在丰富该领域。近年来最引人注目的趋势之一是里曼尼亚几何学和谎言群体理论的显着意义的迅速崛起。根本原因是数据的复杂性上升,激发了更复杂的方法,从而导致广泛认识到大量数据集表现出内在的曲率。换句话说,许多数据集自然代表或忠实地嵌入了非欧几里得空间中。这种明显的例子是机器人技术中的旋转运动。n维空间中的旋转构成谎言组,并且没有矢量空间的结构。但是,非欧盟数据的显着性远远超出了这个特定示例。略有明显,但无处不在的是双曲几何形状中的数据表示。被广泛接受的是,任何具有某些(可能是隐藏的)层次结构的数据集自然地嵌入具有恒定负曲率的Riemannian歧管中[18,19,15]。数据激发系统方法的各种非欧亚人表示的最新进展,从而引起了新兴领域,名为“几何深度学习” [8]。
扩散生成模型(DMS)在图像和图生成方面取得了有希望的结果。然而,现实世界图,例如社交网络,分子图和交通图,通常共享非欧国人拓扑和隐藏的层次结构。例如,图的度分布主要是幂律分布。当前的潜在扩散模型将层次数据嵌入到欧几里得空间中,从而导致扭曲并干扰建模分布。取而代之的是,由于其指数生长特性,已发现双曲线空间更适合捕获复杂的层次结构。In order to simulta- neously utilize the data generation capabilities of diffusion models and the ability of hyperbolic embeddings to extract la- tent hierarchical distributions, we propose a novel graph gen- eration method called, Hyperbolic Graph Diffusion Model (HGDM), which consists of an auto-encoder to encode nodes into successive hyperbolic embeddings, and a DM that oper- ates in the双曲线潜在空间。HGDM通过构造包含边缘信息的双曲线潜在节点空间来捕获Crucial图结构分布。的实验实验表明,HGDM在通用图和分子生成基准测试中获得了更好的表现,并且具有高度层次结构的图生成质量提高了48%。
具有 3-D 双曲空间 H 3 。当 h eff = nh 0 时,任何携带暗物质的系统的磁体 (MB) 都提供了任何系统的表示(反之亦然)。MB 能否提供这种表示,作为因果菱形 (cd) 的 3-D 双曲面的镶嵌,定义为 M 4 的未来和过去定向光锥的交点?由 SL (2, Z) 的子群或其用代数整数替换 Z 的泛化标记的镶嵌点将由其统计特性决定。H 3 处神经元磁像的位置将定义 H 3 的镶嵌。镶嵌可以映射到庞加莱盘的模拟 - 庞加莱球 - 表示为未来光锥的 t = T 快照(t 是线性闵可夫斯基时间)。t = T 之后,神经元系统的大小不会改变。镶嵌可以将认知表征定义为一组离散的时空点,其坐标为可分配给表示 MB 的时空表面的有理数的某种扩展。有人可能会认为 MB 具有更自然的圆柱对称性而不是球对称性,因此也可以考虑在 E 1 × H 2 处使用圆柱表示
在某些频率下,通过抗磁性有序的磁晶体传播的光传播可以表现出与双曲线极性子相关的各种现象。由于强烈的各向异性而出现了有趣且可能有用的现象,这是由镁质 - 波利顿共鸣驱动的强烈各向异性的,包括负折射和聚焦在扁平镜头中。在双曲介质中,这种不寻常的光学器件通常在各向异性垂直或与介质的界面平行时表现出来。然而,各向异性方向可以是控制波传播的关键药物。在这里,我们探讨了如何使用这种材料特性来大幅度修改光学现象。更具体地说,我们发现,通过将光轴的方向倾斜相对于抗铁磁晶体的表面,可以获得不对称的波传播,进而可以用来将其用于横向调节由双胞胎介质制成的平面镜头的焦点。
决策通常需要平衡立即满足与长期利益。在增强学习(RL)中,这种平衡行为受到时间差异的影响,该行为量化了未来奖励的贬值。事先的研究表明,与RL中使用的常规指数折扣相比,人类决策与双曲线折扣更加与双曲线折扣保持一致。随着人造代理变得更加先进和普遍,尤其是在与人类的多代理设置中,对适当的折扣模型的需求变得至关重要。尽管已经提出了单质学习的双曲线折扣,但其在多代理增强学习中的潜力(MARL)仍未开发。我们在MAL中介绍和制定双曲线折扣,在各种框架上建立理论和实践基础,包括独立学习,集中策略差异和价值分解方法。我们评估了多余的合作任务的双曲线折扣,将其与指数折扣基线进行了比较。我们的结果表明,双曲线折扣在60%的方案中获得了更高的回报,并且在95%的任务中以指数折扣的速度表现出色,并在稀疏奖励和协调密集的环境方面得到了显着改善。这项工作为高级多代理系统开发的强大决策过程开辟了新的途径。
过去,计算系统生物学的研究更多地侧重于高级统计和数值优化技术的开发和应用,而较少关注对生物空间几何形状的理解。通过将生物实体表示为低维欧几里得空间中的点,最先进的药物-靶标相互作用 (DTI) 预测方法隐含地假设生物空间具有平坦的几何形状。相比之下,最近的理论研究表明,生物系统表现出具有高度聚类性的树状拓扑结构。因此,将生物系统嵌入平坦空间会导致生物对象之间距离的扭曲。在这里,我们提出了一种用于药物-靶标相互作用预测的新型矩阵分解方法,该方法使用双曲空间作为潜在生物空间。与经典的欧几里得方法相比,双曲矩阵分解表现出卓越的准确性,同时将嵌入维度降低了一个数量级。我们认为这是双曲几何支撑大型生物网络的额外证据。
最新的表示学习研究表明,层次数据将自己带入双曲线空间中的低维和高度信息的表示。但是,即使双曲线嵌入在图像识别方面也收集了,它们的优化也容易出现数值障碍。此外,与传统的Eu-Clidean特征相比,尚不清楚哪种应用将受益于双曲线的隐性偏见最大。在本文中,我们专注于原型双曲神经网络。尤其是,双曲线嵌入的趋势会在高维度收敛到庞加尔e球的边界,并且对这对几乎没有的分类具有影响。我们表明,在常见的双曲半径上获得双曲线嵌入的最佳射击效果。与先前的基准结果相反,我们证明了配备有欧几里德指标的固定radius编码器可以实现更好的性能,而与嵌入式维度无关。