用于 iγδT 细胞疗法的 GMP 克隆生成始于人类 PBMC。在富集和重编程后,根据基因组完整性测试(包括残留基因表达、TCR 测序和形态学评估)选择 iPSC 克隆。合格的 iPSC 系被冷冻保存并经过多轮基因编辑,每轮之后进行单细胞分选。根据细胞健康、靶向和脱靶编辑以及基因组完整性(通过全基因组测序和致癌基因突变面板)选择工程 iPSC 克隆进行冷冻保存到种子库中。在分化之前,完全改造的 iPSC 将扩增、成熟为 γδT 细胞,增殖后,iγδT 细胞被收获为药品。
蛋白质tau的抽象聚集定义了tauopathies,其中包括阿尔茨海默氏病和额颞痴呆。特定的神经元亚型有选择地容易受到tau聚集的影响,随后的功能障碍和死亡,但潜在的机制尚不清楚。系统地揭示了控制人类神经元中Tau聚集体积累的细胞因子,我们在IPSC衍生的神经元中进行了基于基因组CRISPRI的修饰筛网。屏幕发现了预期的途径,包括自噬,以及意外的途径,包括ufmylation和GPI锚构成。我们发现E3泛素连接酶CUL5 SOCS4是人类神经元中tau水平的有效修饰符,泛素化tau,与小鼠和人类中的auopanty的脆弱性相关。线粒体功能的破坏会促进tau的蛋白酶体错误处理,从而产生tau蛋白水解片段
常染色体隐性肢带型肌营养不良症 21 (LGMDR21) 是由蛋白质 O-葡萄糖基转移酶 1 (POGLUT1) 的致病变异引起的,该酶负责对 50 种哺乳动物蛋白质(包括 Notch 受体)中发现的特定表皮生长因子 (EGF) 重复序列进行 O-糖基化。先前的患者活检数据表明,Notch 信号传导受损、肌肉干细胞减少和分化加速可能与疾病病因有关。使用患者诱导的多能干细胞 (iPSC)、其校正同种型和对照 iPSC,基因表达谱分析表明 POGLUT1、NOTCH、肌肉发育、细胞外基质 (ECM)、细胞粘附和迁移的失调是相关通路。它们还表现出体外 POGLUT1 酶活性和 NOTCH 信号传导降低以及肌肉生成、增殖、迁移和分化缺陷。此外,体内研究表明植入、肌肉干细胞形成、PAX7 表达和维持显著减少,同时间质中错误定位的 PAX7 + 细胞百分比增加。使用 CRISPR-Cas9 切口酶对患者 iPSC 进行基因校正可挽救主要的体外和体内表型。这些结果证明了 iPSC 和基因校正在疾病建模和表型挽救中的功效,并提供了肌肉干细胞生态位定位、PAX7 表达和细胞迁移作为 LGMDR21 的可能机制参与的证据。
“细胞治疗峰会:iPSC 应用与创新”计划邀请了国际知名的细胞治疗专家,尤其是 iPSC 应用专家。基于 iPSC 的疗法已成为一种革命性的、前景广阔的方法,代表着向个性化和高效医疗迈出了重大一步。通过重新编程分化细胞而产生的 iPSC,具有在人体内发育成各种细胞类型的卓越能力。这种多功能性不仅改变了再生医学,也为癌症治疗开辟了新的途径。通过学习肿瘤学以外的 iPSC 应用,我们可以增强我们的理解并制定新的策略来应对癌症。这种多功能性推动了全球学术机构、研究中心和制药公司对基于 iPSC 的细胞疗法(例如 CAR-T、NK)的研究和开发势头,以将科学创新转化为实用的医疗治疗方法。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本发布于2025年1月8日。 https://doi.org/10.1101/2023.06.16.545161 doi:biorxiv preprint
crispr screens in IPSC-Derived neurons reveal principles of tau protests avi J. Samelson 1 , Nabela Ariqat 1 , Justin McCetney 2,3,4 J. Travaglini 6 , Victor L. lam 7 , Darn Goodness 1 , Gay Dixon 1 , Emily Marzette 1 , Julianne Jin 1 , Ruilin Tiian 1 , Eric tse 1,8 , Rome Abskharon 9,Henry Pan Lawrence 3,10,Jason E. Geswicki 1,7,David Eisenberg 9,11,Nicholas M.因此12,Daniel R. Southworth 1,8,John D. Gross 7,Li Gan 5<美国加利福尼亚州旧金山大学神经退行性疾病DIV加利福尼亚大学旧金山分校,定量生物科学研究所(QBI),美国加利福尼亚州旧金山,美国3。加利福尼亚大学SAN
止血-van creveldkliniek,乌得勒支。2。Sanquin Research,阿姆斯特丹造血部。 引言钻石 - 黑色贫血综合征(DBAS)是一种罕见的遗传性骨髓衰竭综合征,其特征是低肿瘤性贫血,先天性畸形和对癌症的倾向。 大多数DBA患者在20个核糖体蛋白基因之一中出现突变,并且在分子和临床上都是非常异质的疾病。 DBA中贫血的治疗选择受到限制,包括糖皮质激素(GCS),红细胞(RBC) - 转移 - 经常性和同种异体干细胞移植,用于少量年轻患者。 除了对新型治疗选择的明显需求外,驱动DBA的疾病机制尚未完全阐明,并且由于患者样本的稀缺性和适当的疾病模型的稀缺性而阻碍了研究。 我们研究的目的是开发代表不同基因型和临床严重程度的基于IPSC的DBA模型。 这些模型可以用作研究疾病生物学,对GC的反应和其他贫血候选药物的工具箱。 我们已经从具有差异分子缺陷和临床严重程度的DBA患者中产生了IPSC线。 IPSC线用于产生造血器官(HEO),从中获得RBC前体。 在功能上表征了DBA IPSC-雌雄同体和对GCS的体外反应,收集了IPSC衍生的红细胞,并在培养期间或急性刺激期间遵循了对GC模拟dexametheroson的反应。Sanquin Research,阿姆斯特丹造血部。引言钻石 - 黑色贫血综合征(DBAS)是一种罕见的遗传性骨髓衰竭综合征,其特征是低肿瘤性贫血,先天性畸形和对癌症的倾向。大多数DBA患者在20个核糖体蛋白基因之一中出现突变,并且在分子和临床上都是非常异质的疾病。DBA中贫血的治疗选择受到限制,包括糖皮质激素(GCS),红细胞(RBC) - 转移 - 经常性和同种异体干细胞移植,用于少量年轻患者。除了对新型治疗选择的明显需求外,驱动DBA的疾病机制尚未完全阐明,并且由于患者样本的稀缺性和适当的疾病模型的稀缺性而阻碍了研究。我们研究的目的是开发代表不同基因型和临床严重程度的基于IPSC的DBA模型。这些模型可以用作研究疾病生物学,对GC的反应和其他贫血候选药物的工具箱。我们已经从具有差异分子缺陷和临床严重程度的DBA患者中产生了IPSC线。IPSC线用于产生造血器官(HEO),从中获得RBC前体。在功能上表征了DBA IPSC-雌雄同体和对GCS的体外反应,收集了IPSC衍生的红细胞,并在培养期间或急性刺激期间遵循了对GC模拟dexametheroson的反应。分析包括FACS分析,用于GC目标基因的QPCR,总RNA测序,形态分析和增殖动力学。MACS分级的IPSC衍生的红细胞允许阶段特定分析,当被认为适当时。结果我们已经生成了具有不同分子背景的DBA患者衍生的IPSC线(2X RPS19,1X RPS26和1X未知突变)。使用这些线路,我们成功地从HEO中成功产生了代表DBA中红细胞缺陷的RBC - 前体,并与各自DBAS患者的临床表型及其对体内GC治疗的反应相匹配。我们还将吉尔兹识别为GC响应基因,并将其用于确定培养基细胞中的GC受体信号传导动力学。与增殖动力学和RNA测序实验一起,我们使用它来评估HEO衍生的培养基细胞中对GC的反应。目前,我们正在研究基因型表型相关性和IPSC模型中GC响应的分子机制。结论DBAS患者衍生的IPSC线可以用作新型疾病模型,以研究仍知之甚少的DBA中的疾病表型。此外,IPSC衍生的红细胞可用于研究“新旧”的治疗干预措施,包括广泛使用的糖皮质激素。我们的DBAS- IPSC系列代表了一个强大的工具箱,用于未来的DBA研究,该工具可以克服了对其他患者材料或动物模型的需求。
本综述提供了两种主要类型器官之间的全面比较:诱导多能干细胞(IPSC)衍生的和成人干细胞(ASC)衍生(也称为患者衍生的器官,PDOS)。IPSC衍生的类器官,源自重编程的细胞,表现出显着的可塑性,可以建模各种组织和发育阶段。它们对于研究早期人类发展,遗传疾病和复杂疾病特别有价值。但是,诸如延长分化方案和成熟水平的可变性之类的挑战仍然是重大障碍。相比之下,直接由患者组织产生的ASC衍生的类器官,忠实地概括了组织特异性的特异性和疾病表型。这种保真度使它们对于个性化医学应用必不可少,包括药物筛查,疾病建模和理解个性化的治疗反应。
在 ElevateBio,我们提供一个集成的生态系统,提供端到端功能,将概念从实验室转化为临床。我们丰富的 iPSC 经验包括在我们的 BaseCamp 工艺开发和 cGMP 制造设施中成功验证 GMP 细胞库活动。ElevateBio 旗下公司 Life Edit 的专有基因编辑工具可用于生成新型工程 iPSC 细胞系。与我们合作使生物制药公司能够利用基因工程和细胞疗法制造方面的先进技术和专业知识,确保 iPSC 衍生疗法符合严格的监管标准,从而加速下一代基因组药物的开发。
心脏二元组中的离子通道和细胞骨架蛋白在维持兴奋-收缩 (EC) 耦合和提供心脏稳态方面发挥着关键作用。这些二元组蛋白质的功能变化,无论是由遗传、表观遗传、代谢、治疗还是环境因素引起的,都会破坏正常的心脏电生理学,导致异常的 EC 耦合和心律失常。动物模型和异源细胞培养为基础心脏研究提供了阐明心律失常发病机制的平台;然而,这些传统系统并不能真正反映人类心脏电病理生理学。值得注意的是,具有相同遗传性通道病 (ICC) 基因变异的患者通常表现出不完全的外显率和不同的表现度,这强调了建立患者特定疾病模型以理解心律失常的机制途径和确定个性化疗法的必要性。患者特异性诱导多能干细胞衍生的心肌细胞 (iPSC-CM) 继承了患者的遗传背景,并反映了天然心肌细胞的电生理特征。因此,iPSC-CM 为心脏病建模和治疗筛选提供了一个创新且具有转化价值的关键平台。在这篇综述中,我们将研究患者特异性 iPSC-CM 如何在历史上演变为在培养皿中模拟心律失常综合征,以及它们在理解特定离子通道及其功能特征在引起心律失常中的作用方面的实用性。我们还将研究 CRISPR/Cas9 如何实现基于患者独立和变异诱导的 iPSC-CM 的心律失常模型的建立。接下来,我们将研究使用人类 iPSC-CM 进行体外心律失常建模的局限性,这种建模源于 iPSC 的变化或 iPSC 或 iPSC-CM 基因编辑引起的毒性,并探索如何解决这些障碍。重要的是,我们还将讨论新型 3D iPSC-CM 模型如何更好地捕捉体外特征,以及全光学平台如何提供非侵入性和高通量电生理数据,这些数据可用于分层新出现的心律失常变异和药物发现。最后,我们将研究提高 iPSC-CM 成熟度的策略,包括强大的基因编辑和光遗传学工具,这些工具可以在 iPSC-CM 中引入/修改特定离子通道并定制细胞和功能特征。我们预计 iPSC、新型基因编辑、3D 培养和细胞培养的协同作用将在未来几年内实现。