1 MDI生物实验室,Kathryn W. Davis再生生物学与衰老中心,美国缅因州Bar Harbor,美国,美国2 MDI Bioscience,Bar Harbour,Bar Harbour,美国缅因州,美利坚合众国#相同贡献 *相互贡献 *通讯作者:Romain Madelaine电子邮件:Romain Madelaine电子邮件:rmadelaine@mdibl.gl.org.org
序列 MERPPGLRPG AGGPWEMRER LGTGGFGNVC LYQHRELDLK IAIKSCRLEL STKNRERWCH EIQIMKKLNH ANVVKACDVP EELNILIHDV PLLAMEYCSG GDLRKLLNKP ENCCGLKESQ ILSLLSDIGS GIRYLHENKI IHRDLKPENI VLQDVGGKII HKIIDLGYAK DVDQGSLCTS FVGTLQYLAP ELFENKPYTA TVDYWSFGTM VFECIAGYRP FLHHLQPFTW HEKIKKKDPK CIFACEEMSG EVRFSSHLPQ PNSLCSLVVE PMENWLQLML NWDPQQRGGP VDLTLKQPRC FVLMDHILNL KIVHILNMTS AKIISFLLPP DESLHSLQSR IERETGINTG SQELLSETGI SLDPRKPASQ CVLDGVRGCD SYMVYLFDKS KTVYEGPFAS RSLSDCVNYI VQDSKIQLPI IQLRKVWAEA VHYVSGLKED YSRLFQGQRA AMLSLLRYNA NLTKMKNTLI SASQQLKAKL EFFHKSIQLD LERYSEQMTY GISSEKMLKA WKEMEEKAIH YAEVGVIGYL EDQIMSLHAE IMELQKSPYG RRQGDLMESL EQRAIDLYKQ LKHRPSDHSY SDSTEMVKII VHTVQSQDRV LKELFGHLSK LLGCKQKIID LLPKVEVALS NIKEADNTVM FMQGKRQKEI WHLLKIACTQ SSARSLVGSS LEGAVTPQTS AWLPPTSAEH DHSLSCVVTP QDGETSAQMI EENLNCLGHL STIIHEANEE QGNSMMNLDW SWLTE
注意:介绍部分是您的一般知识,不应将其视为政策覆盖标准。
此预印本的版权所有者此版本于 2022 年 4 月 3 日发布。;https://doi.org/10.1101/2022.04.01.486669 doi:bioRxiv preprint
伤口愈合过程经历了复杂的机制,需要很长时间。基于经验经验,比纳洪离开(Anredera cordifolia(十)steenis)治愈新鲜的伤口。这项研究旨在确定Binahong提取物作为通过硅和体外测试中伤口愈合的活性成分的潜力。使用具有多种不同溶剂的超声化方法提取叶子:乙酸乙酯 - 乙醇和乙醇水性比例确定。基于UHPLC-HRMS分析,96%乙醇提取物鉴定出187种化合物,70%乙醇提取物153种化合物,50%乙醇提取物105种化合物和乙酸乙酸乙酯提取物110化合物。在计算机研究中表明,具有MMP1的反式3-吲哚丙烯酸化合物的结合能为-8.0 kcal/mol,而MMP1天然配体产生-9.5 kcal/mol。使用MMP12的葡萄糖酸化合物产生-4.3 kcal/mol的结合能,而对于天然配体,MMP12产生-3.4 kcal/mol。两种化合物均在Anredera Cordifolia(十)steenis提取物,具有70%的乙醇溶剂。使用MTT方法使用超过24、48和72小时的纤维爆炸细胞增殖测定法进行了体外测定。在24小时孵育期间以70%乙醇提取的提取物显着增加了细胞增殖,但在48小时和72小时的孵育期间,它往往稳定。Anredera Cordifolia的70%乙醇(十) 与其他溶剂提取物相比,在8μg/mL –200μg/ml浓度下以8μg/ml –200μg/ml的浓度以显着增加细胞增殖。Anredera Cordifolia的70%乙醇(十)与其他溶剂提取物相比,在8μg/mL –200μg/ml浓度下以8μg/ml –200μg/ml的浓度以显着增加细胞增殖。这些结果表明Anredera Cordifolia的70%乙醇提取物(十)Steenis具有加速增殖过程的最佳活动,这可能是修复伤口的第一步。这项研究表明,Anredera Cordifolia的70%乙醇(十)Steenis作为伤口治疗剂有效。
1 Aix-Marseille University,Inserm,MMG,13005 Marseille,法国; jean-camille.mattei@ap-hm.fr(J.C.M.); corinne.bouvier2@ap-hm.fr(C.B.-L。); Richardalexandre.rochwerger@ap-hm.fr(R.A.R.); florence.duffaud@ap-hm.fr(F.D.); solschwang@gmail.com(s.o.); sebastien.salas@ap-hm.fr(S.S.)2 Aphm,h [hôpital-Nord,Orthop Service and Trauma,13015 Marseille,法国Marseille,法国3 APHM,HOR,Pital de la Timone,病理解剖学和神经病理学的服务服务doriane.barets@ap-hm.fr(D.B.); nicolas.macagno@ap-hm.fr(N.M.)4 AIX-MARSELILLE大学,CNRS,INP,INP,Inst Neurophysiopathol,13005,法国Marseille,法国; mathieu.chocry@univ-amu.fr(m.c.); philippe.morando@univ-amu.fr(P.M.)5 Inserm,UMR 1037,31077法国图卢兹; Frederic.Chibon.fr 6 Aphm,Hortial肿瘤学服务,13005年,法国Marseille,7 Aphm,h。 13005 Marseille,法国9 APHM,生物资源中心,13005法国马赛 *通信:Carine.jiguguet-jiglaire@univ-amu.fr;这样的。: + 33-(0)49-132-4444†这些作者对这项工作也同样贡献。‡这些作者是共同的作者。
最近的微生物基因组测序工作揭示了大量含有整合酶的移动遗传元件,这些整合酶可能成为有用的基因组工程工具。大型丝氨酸重组酶 (LSR),例如 Bxb1 和 PhiC31,是噬菌体编码的整合酶,可以促进噬菌体 DNA 插入细菌基因组。然而,之前仅鉴定了少数 LSR,它们在人类细胞中的效率有限。在这里,我们开发了一个系统的计算发现工作流程,通过识别数千个新的 LSR 及其同源 DNA 附着位点。我们通过在人类细胞中对 LSR 进行实验表征来验证这种方法,从而产生了三类根据其效率和特异性彼此区分的 LSR。我们识别了可有效整合到与人类基因组正交的合成安装附着位点的着陆垫 LSR、具有计算可预测伪位点的人类基因组靶向 LSR,以及可以单向整合货物的多靶向 LSR,其效率与常用转座酶相似,特异性更高。每个类别的 LSR 在人类细胞中都进行了功能鉴定,总体而言,其质粒重组率比 Bxb1 高出 7 倍,基因组插入效率为 40-70%,载物大小超过 7 kb。总体而言,我们建立了一个范例,用于大规模发现微生物重组酶并直接从微生物测序数据重建其靶位。该策略提供了丰富的资源,包括 60 多种经过实验鉴定的 LSR,这些 LSR 可以在人类细胞中发挥作用,以及数千种额外的候选 LSR,可用于大负载基因组编辑,而不会暴露 DNA 双链断裂。
摘要 挖掘噬菌体中的新酶活性对于开发新的生物技术工具仍然很重要。在本研究中,我们使用 MetaGPA(一种将宏基因组数据中的基因型与表型联系起来的方法)来识别脱氧胞苷脱氨酶,这是一种与宏病毒组中的胞嘧啶修饰高度相关的蛋白质家族。出乎意料的是,这些脱氨酶的一个子集在单核苷酸和单链 DNA 底物中都表现出对 5-甲基胞嘧啶 (5mC) 的偏好,而不是胞嘧啶 (C)。在甲基化组测序工作流程中,这些酶优先脱氨 5mC,这使得甲基化胞嘧啶能够直接转化,同时完全消除任何未修饰胞嘧啶的背景脱氨。这种直接转换允许以单碱基分辨率精确识别甲基化位点,具有无与伦比的灵敏度,为基因组和甲基化组的同时测序提供了广泛的应用。
疟疾是由疟原虫属的原生动物寄生虫引起的,并且仍然是全球健康问题。寄生虫具有高度适应的生命周期,其中包括脊椎动物宿主中的连续无性复制和蚊子载体围绕中的性成熟。寄生虫的遗传操纵对破译疟原虫基因功能的功能具有重要作用。常规的反向遗传工具不能用于研究无性血液阶段的基本基因,从而需要制定条件策略。在各种此类策略中,雷帕霉素可诱导的可二聚化CRE(DICRE)重组酶系统是一种有条件地编辑人类感染的恶性疟原虫和啮齿动物疟疾模型寄生虫寄生虫P. Berghei的强大方法。我们先前生成了表达二甲虫的berghei线,并通过有条件地删除了几个必不可少的无性阶段基因来验证它,从而揭示了它们在孢子虫中的重要作用。另一个有效的工具是CRISPR/CAS9技术,该技术已启用了具有更高精度和特异性的目标基因组编辑,并且在疟原虫属中具有大量先进的基因组工程。在这里,我们通过在寄生虫中整合了Dicre盒和荧光标记来开发新的Berghei寄生虫线,以组成表达Cas9。由于CRISPR/CAS9和DICRE的双重整合,这些新系列允许同时进行无与伦比的基因修饰和条件调节。为了说明这种新工具的多功能性,我们有条件地淘汰了编码贝尔格(P. Berghei)类似claudin的apicomplexan微米蛋白(夹具)的基本基因,并确认了夹具在侵入红细胞细胞中的作用。
1。中国西区西里库大学康复医学系,成都,610041,四川,中华人民共和国。2。中国人民共和国四川大学西中国医院康复医学的主要实验室。3。神经病学系,神经退行性疾病实验室,国家临床研究中心医院,四川大学,国家临床研究中心,第37号,Guoxue Lane,Chengdu,Chengdu,Sichuan,Sichuan,610041,中国。4。衰老研究实验室,国家临床研究中心国家临床研究中心医院,西丘恩大学,中国成都,国家临床研究中心。5。广州中医大学的针灸临床医学学院,木质和康复,广东,广东510006,公关中国。6。国家针对平民保护的国家主要实验室,中国北京102205。