III-V材料在硅上的直接生长是开发单层积分激光器的关键推动剂,在重要通信和计算技术中为超密集的光子整合提供了巨大的潜力。但是,III-V/SI晶格和热膨胀不匹配构成了重大障碍,从而导致缺陷使激光性能降低。这项研究克服了这一挑战,证明了与天然GAAS底物上的顶级激光器相当的INAS/GAAS-SI激光器。这是通过新开发的外延方法来实现的,其中包括一系列严格优化的增长策略。原子分辨率扫描隧道显微镜和光谱实验揭示了活性区域的出色材料质量,并阐明了每种生长策略对缺陷动态的影响。优化的III-V-n-silicon脊脊 - 波导激光器显示出低至6 mA的连续波阈值电流,高温操作达到165°C。在80°C,对于数据中心应用至关重要,它们保持12 ma阈值和35 MW的输出功率。此外,使用相同过程在SI和GAAS底物上制造的激光均显示出几乎相同的平均阈值电流。通过消除与GAAS/SI不匹配相关的性能限制,这项研究为将广泛的III-V光子技术的广泛范围稳健而高密度整合到硅生态系统中铺平了道路。
拓扑和超导性,两种不同的现象,为量子特性及其在量子技术,旋转型和可持续能源技术中的应用提供了独特的见解。tin(sn)在这里起关键作用作为元素,因为其两个结构相,α -sn表现出拓扑特征,β -sn显示超导性。在这里,我们使用分子束外延和缓冲层的晶格参数的分子束外延对SN薄膜中的这些相进行了精确的控制。SNFMS表现出β -SN或α -Sn相,因为缓冲层的晶格常数与6相差不同。10Å至6。48Å,跨越从燃气(例如INAS)到Insb的范围。α-和β -SNFM的晶体结构以X射线衍射为特征,并由拉曼光谱和扫描透射电子显微镜确认。原子力显微镜验证了光滑,连续的表面形态。电运转运测量进一步验证了阶段:β-SN超导性和Shubnikov -de HAAS振荡接近3.7 K的电阻下降,用于α -SN拓扑特征。密度功能理论表明,在拉伸应变下α -SN在压缩应变下是稳定的,与实验发现很好地对齐。因此,这项研究介绍了一个通过晶格工程控制SN阶段的平台,从而在量子技术及其他方面实现了创新的应用。
用于量子纠缠和量子逻辑操作的自旋 - 光子接口该项目旨在控制最基本层面的光与物质之间的相互作用:Qubits。为此,我们最近在单个材料值(单电荷的旋转)和单个光子量子位(单个光子的极化)之间开发了有效的界面。我们的界面使用半导体孔携带的自旋量子置量位,限制在纳米尺度的INAS量子点(QD)中,确定性地耦合到电触发的微型腔。正如我们所证明的那样,这种QD-腔结构反映的光子经历了其极化的极化旋转,顺时针或逆时针,这取决于旋转状态(见图1。使用确定性耦合的自旋光子接口2和极化状态层析成像实验3,我们实现了光子极化状态的完整逆转,由单个旋转4控制。最近,我们使用单个光子5证明了单个旋转的光学探测。在这样的实验中,每个检测到的光子都会在拟议的实习和以下博士学位论文提供的旋转量子量量子上进行测量反作用,我们希望探索此类自旋光子接口的观点以获取量子信息。最终的目标是展示新形式的自旋 - 光子纠缠和光子 - 光子纠缠,并发展由自旋 - 光子相互作用介导的逻辑门。在途中,我们还将执行基本的量子测量,并研究自旋及其固态基质之间的相互作用。C2N组的所有技术,实验和理论专业知识都将成功地领导该项目。我们欢迎具有质量物理,光学和/或固态物理学背景优秀背景的高度动力申请人,并且对理论和数值模拟有品味。
1.基于CMOS的仪表放大器(INAS)用于可穿戴生物医学设备:在设计可穿戴应用的信号条件电路时,噪声和功率规格之间存在强大的权衡。为此,我们正在研究一些设计方法,以优化上述权衡。随着高密度无线网络设备的出现,EMI对前端电子设备的影响至关重要,这使我们探索了CMOS电路中的EMI方面。2.神经信号记录和刺激:生物神经元和电子设备之间的下一个人类计算机接口的范式。关于该主题和技术演示的科学文献的进步,例如Neuralink,使该领域非常有前途。为此,我们一直在研究基于CMO的神经放大器和刺激器电路的设计。3.基于CMOS的神经形态电路设计:随着AI和ML的出现,人们对开发基于Neumann架构的非VON NEUMANN架构平台引起了重大兴趣。我们正在研究完全兼容NM计算系统的各个方面,例如硅神经元,基于Memristor的突触重量,芯片学习电路以及跨杆阵列设计,考虑寄生虫,编码器和解码器电路,以与现实世界相连。4.使用SCL过程的原始IC开发:我们正在开发用于空间应用的高精度仪器的辐射硬化信号调理前端ASIC。通过蒙特卡洛分析,我们确保了对不匹配的设计耐受性。作为环振荡器被认为是CMOS技术表征的良好测试电路,我们使用180 nm SCL PDK设计了全数字温度传感器。层次后的仿真结果与分析推导非常吻合,并且通过在PVT跨PVT变化中模拟了所提出的设计,已测试了鲁棒性。
Majorana零模式(MZM)的成功实现 - 不代表大约的凝结物类似物[2,3],为拓扑量子构成[4-7]的有前途的平台[4-7],依赖于拓扑阶段的强大超级超级超级阶段[4-7],这些阶段是他们[8-8]的固有阶段[8]。在没有天然发生的一维拓扑超导体的情况下,该研究集中在杂化结构[15-17]上,尤其是半导体(SM)电线,在存在磁性纤维相似的情况下,与S-波超导体(SCS)接近耦合,并耦合。即使在存在一些弱 /中度系统不均匀性的情况下,即使在存在某些弱 /中度系统的情况下,也可以确保出现拓扑超导阶段的出现。然而,除了抑制母体超导体的间隙外,轨道效应起着重要作用[25],并且严重限制了可靠的拓扑超导性的实现,应用的磁性磁场对基于Majorana基于Majorana topolication Quological Qubits的可能的设备布局构成了严重的限制[26]。可能的解决方案是通过将半导体耦合到磁性内硫酸[16,27]来创建所需的Zeeman场。最近,使用INAS纳米线进行了实验性探索,具有超导Al和铁磁EUS的外延层[28-30]。关键的发现是1 t命令的有效Zeeman Field SC EFF(〜0。这些特征在没有重叠的Al和EUS覆盖的小面的杂化结构中不存在[28]。05 MeV)在没有施加的磁场的情况下出现在超导体中,但仅在具有超导体和铁磁绝缘子的壳壳中壳壳[28]。与超导体中有效的Zeeman场的出现相关的是,观察到零偏置电导峰,用于电荷隧穿到半导体线的末端,这与拓扑超导的存在一致。
混合超导体 - 触发器设备为固态量子信息处理提供了独特的优势。特别是,自十年前的成立以来,Gatemon Qubit已被证明是一个多功能的实验平台。对于所有类型的Qubits,理解和克服的破坏性是向大规模量子计算进展的重要部分。在本论文中,提出了与GATEMON中的分层有关的三个不同的研究。首先,在有限的磁场中研究了在Inas纳米线中形成的带有完全覆盖的壳的gatemon。在应用领域中调查该系统的是可能存在Majorana零模式的可能性,该模式可用于防止逆转。观察到量子转换频率对磁场的非单调依赖性被观察并解释为破坏性的小公园效应。没有观察到有限的主要耦合(E M)的特征。通过测量值的电荷分散体,将上限放置在E m / h <10mHz时。接下来,研究了纳米诺威氏菌在纳米线gatemon中诱导的奇偶校验切换。准颗粒中毒会导致逆转状态,并且是超导Qubits损失的重要来源。在零磁场时,发现切换在100 ms的时间尺度上发生。随着温度或磁场的增加,切换速率被观察到第一个常数,然后呈指数增加,这与共存非平衡和热准粒子的常规图片一致。在零磁场上缓慢的平价切换对于gatemon连贯时间的未来发展有希望。最后,提出了对基于2DEG的盖特尼人的早期结果,其多个大门接近约瑟夫森交界处。
Div> ADB Asian Development Bank AIIB Asian Infrastructure Investment Bank ANC antenatal care what alternative procurement arrangement APBN State Budget (State Budget) ASPAK Application of Facilities, Infrastructure, and Medical Devices (Applications of Facilities, Infrastructure, and Medical Devices) National Development Planning Agency) BKPK Health Development Policy Agency (Health Development Policy Agency) BPJS -K Social Security Administrator for Health Organizing Agency - Health) BPK最高审计机构BPPK金融教育和培训机构以及卫生人力资源的授权)BRIN国家研究与创新局(国家研究与创新机构)CCDR国家气候与发展报告COVID-19 COVID-19 CORONAVIRUS疾病2019年CPF DAU通用分配基金(一般分配基金)DFAT外交和贸易部Dho地区卫生局(D INAS Health或Health Infirate)。DIPA List of Entries of Budget Execution ( Daftar Isian Pelaksanaan Anggaran ) DPL Development Policy Loan DRG Diagnostic-Related Group DTO Digital Transformation Office ECRI Emergency Care Research Institute ENDC Enhanced Nationally Determined Contribution ESCP Environmental and Social Commitment Plan ESF Environmental and Social Framework ESS Environmental and Social Standards FETP Field Epidemiology Training Program FM Financial Management FMA Financial Management Assessment GCRF Global Crisis响应框架GDP国内生产总值印度尼西亚GOI GOI GOI GRID GREEN,弹性和包容性开发GRM申诉机制
半导体P - i -n异质结构被广泛用作辐射探测器,并在光电子中具有多种应用[1-4]。在这种半导体结构中的能量吸收高于禁止带宽度的光导致电子孔对产生。对,在耗尽的I -Area中产生或从I -Area到掺杂n-和P-层的深度的扩散长度的距离与电场分开,因此电流出现在外部电路中[4]。光电流值将用载体的漂移电流定义,该载体在I -Area中产生,以及在I -Area外产生的载体的扩散电流。在某些条件下,半导体结构的光响应可以检测到多个各种量子振荡事件。例如,由于光电声发射的光激发电子和孔的放松导致光电流振荡,具体取决于刺激光子的能量[5]。在GAAS/ALAS或INGAN/GAN P -I -N超晶格中观察到来自偏置电压的光电流振荡[6,7]。在工作[8]中,研究了P - I -N-二极管在光谱光谱上的I -i -i -n-二极管中的INAS层的影响,并显示了此类异质系统对创建敏感光探测器的效率。后来,在这样的单屏障GAAS/ALAS异质结构中(见图1)在辐照时观察到巨大的光电流振荡[9,10],光子能量高于GAA中的光子能量高于禁止带宽度,而GAA中的光子宽度高,这似乎是多种共振 - 类似于Volt-Ampere特性(VAC)的特殊性。振幅为光电流时的平均光值的20%,其光线为λ= 650 nm,而在具有单个隧道屏障的p - i -i -n -diodes中,这是不可能的,这是不可能的。观察到了那个时期
邵燕杰博士摘要:微电子技术是过去 60 年来“数字”革命的支柱。近年来,随着人工智能和物联网的爆炸式增长,开发高性能、最大能效和最小占用空间的电子产品迫在眉睫。为实现这一目标,有两种方法颇具吸引力:(1)低压电子器件和(2)片上丰富的功能集成。在本次演讲中,我们将展示我们在这两个方面的最新研究成果。首先,我们通过利用断带异质结半导体系统(GaSb/InAs)中的量子力学隧穿来实现电源电压 ≤ 0.3 V。我们将展示在垂直纳米线隧穿晶体管配置中可以同时实现亚热电子开启、高驱动电流和最大占用空间可扩展性的组合。在 0.3 V 时,与最先进的 CMOS 技术相比,性能显著提升。其次,我们旨在利用非晶氧化物半导体开发多功能高密度后端 (BEOL) 电子和存储器平台。通过利用等离子体增强原子层沉积 (PEALD),我们合成了具有创纪录性能的增强型 BEOL 晶体管。此外,我们集成了铁电 (FE) 铪锆氧化物 (HZO) 作为非易失性存储器组件,制造了有源面积级 FE 晶体管,并研究了单域级 FE 开关行为。最后,我们将简要讨论氧化物基 FE 晶体管中 FE 疲劳的可能原因。简介:邵燕杰目前是麻省理工学院 (MIT) 微系统技术实验室 (MTL) 的博士后研究员。他于 2019 年获得中国科学技术大学 (USTC) 的学士学位,2021 年获得麻省理工学院的硕士学位,并获得博士学位。 2023 年获麻省理工学院博士学位。他的研究兴趣包括新兴半导体和电介质、纳米电子学和 AI 硬件。他是 2023 年英特尔杰出研究员奖的获得者。
inas diyaa Mahdi助理教授,国际关系与外交系法律与国际关系学院,西汉大学 - 欧比尔。摘要:人类不再仅具有其先进的肌肉或军事能力,甚至不再具有核武器,而是发展了高度破坏性的电子机器,以取代流血战争管理中的人类因素。但是破坏性技术将在哪里占据人类的未来?国家的命运会在人类智能以外的大脑之后由机器人控制吗?人类是否能够控制下一个技术挑战,还是机器人可以控制国家和人民的命运?根据上述问题,已经制定了对战斗机器人在未来战争过程中对军事技术的控制的假设,从而导致人类决策者在政治生活过程中失去了控制。引言技术已经改变了人际关系,重大控制了人类行为和人际关系的质量,并将前所未有的经济和工业系统转变为持续发展。它的干预不仅限于改变人类交流和互动的性质,而是改变了军事方面,这改变了战争形式和手段,直到技术使用的手段变得更具破坏性和颠覆性对人类早期所取得的成就。军事技术最引人注目的成就之一是高水平的指导式战斗机器人,这些机器人减少了创纪录时间的战争的破坏。该研究试图证明战争技术的持续发展的影响加剧了对战斗机器人武器的使用,以至于很难在战争过程中重定向人类控制。这可能是因为军事机器人可以超越人类与这种进化的能力发展大脑。这有助于人类与战争管理的孤立。这项研究基于以下假设:战斗机器人对未来战争的军事技术的日益控制导致人类决策者对政治生活的控制丧失。为了验证假设,研究涵盖了历史军事机器人,机器人组件,主要类型,未来战争,军备竞赛和机器人战争的潜在风险。