眼表面微生物组由细菌,例如凝固酶阴性葡萄球菌和corynebacterium spp。以及病毒,真菌和有时原生动物组成。正常的微生物群在捍卫病原物种的增殖方面起保护性免疫学作用。正常眼表面微生物群的破坏可能在眼科疾病的发病机理中作为辅助因子起重要作用。可以通过几种环境影响和病理状态来改变眼表面菌群,包括干眼症综合征,隐形眼镜磨损,角膜假体,抗生素和感染。在此特殊问题上,我们想向读者介绍Ocular Incotions and Microbobiota Health and Microbobiota Health and Disesase的最新读者。,我们邀请专家对菌群和眼感染的基础研究,无论是基本的还是临床的。作者还可以提交评论文章,描述了微生物组和眼病之间关系的科学发现演变。
合成和天然聚合物作为重要的生物材料对多种生物医学和药物领域的极大兴趣。在合成聚合物中,聚(ε-caprolactone)(PCL)聚合物的生物活性特性有利于其在生物医学和药物应用中的应用。该合成聚合物作为多功能平台已在组织工程和医疗植入物中应用于三维脚手架,微生物感染,糖尿病伤口和癌症作为药物微生物和纳米载体。作为主要好处,PCL说明了具有简单修改的成本效益,易于可用性,可用性,生物相容性,生物降解性和机械特征。然而,这种聚合物表现出较差的亲水性和长期降解周期,作为临床局限性,可以通过具有合成和天然生物材料的新型PCL制剂来改善这些局限性。
细菌感染的负担和疫苗的作用细菌感染是2019年第二大死亡原因,全球总计770万人死亡[1]。超过50%的死亡人数是由五种病原体 - 金黄色葡萄球菌,大肠杆菌,肺炎链球菌,肺炎链球菌,克雷伯氏菌肺炎和假单胞菌 - 铜绿假单胞菌 - 所有这些都与增加的抗抗抗菌抗性相关。疫苗可以减轻抗菌抗性和易感细菌病原体的全球负担。但是,与新疫苗的开发相关的失败率为94%,目前只有十种可用于细菌疾病的可用疫苗[2]。从2022年开始,总共有61名候选疫苗在临床三中,而有94例在细菌疾病的临床前开发中i。尽管如此,技术和经济局限性都有
多年来,Banaei 及其同事一直在开发一种非侵入性替代方法——一种可以检测出血液中脱落的霉菌 DNA 微小碎片的血液检测。这项名为无细胞 DNA 聚合酶链反应(有时也称为液体活检)的技术在检测其他类型的感染以及癌症方面显示出了良好的前景。
•有关尿路感染的感染标准(UTI),血液感染(BSI),肺炎(PNEU),呼吸机相关感染(VAE)和手术部位感染(SSI),请参见各个方案章节。•出于NHSN报告目的,本章中的“有机体”一词包括病毒。为了应用NHSN HAI标准的目的,“医师”一词可以解释为外科医生,传染病医师,急诊医师,其他病例的其他医生,或医师的指定人员(护士从业者或医师的助手)。•属于以下属的生物不能用来满足任何NHSN的定义:胚泡,组织肿瘤,球虫剂,副孢子虫,加密co和肺细胞。这些生物通常是社区相关感染的原因,很少有人会引起与医疗保健相关的感染,因此被排除在外。•来自潜在感染的原发性部位的血液和分离株的抗体图不必为了确定BSI的来源而匹配(请参见下面的“匹配生物”)。•匹配的生物被定义为以下一个:
There is an important role for direct sequencing of patient samples to complement traditional culture-based methods for bacterial sexually transmitted infections (STIs), effectively overcoming limitations posed by fastidious or unculturable pathogens such as Neisseria gonorrhoeae , Treponema pallidum , Mycoplasma genitalium and Chlamydia trachomatis .元基因组技术有效性可以在没有培养的分离株的情况下对抗菌耐药性(AMR),应变键入和微生物组分析进行分析,从而为理解流行病学趋势和指导目标疗法提供关键信息。尽管取得了重大进展,但Chal Lenges仍然存在,例如成本,生物信息学的复杂性和道德考虑。本文讨论了当前的应用,技术创新和未来的前景,将宏基因组学整合到常规的细菌性STI监视中,强调需要确定成本和时间效益的工作流以及增强基因组数据的可访问性。通过应对这些挑战,直接测序有望填补AMR监测和病原体键入中的关键空白,从而提供了新的途径,以增强公共卫生策略,以打击全球细菌性传播疾病。
金黄色葡萄球菌(金黄色葡萄球菌)是一种显着的人类病原体,特别是在患有潜在疾病的患者中。它配备了各种毒力因子,可实现定殖和侵入性疾病。表现的范围很广,从超级皮肤感染到威胁生命的疾病,例如肺炎和败血症。是医疗保健相关感染的主要原因,非常需要理解葡萄球菌免疫和防御机制。经常患有病理感染易感性的先天免疫误差(IEI)患者,但是,并非所有人都容易发生金黄色葡萄球菌感染。因此,金黄色葡萄球菌感染的频率或严重程度增强可以作为特定潜在免疫学障碍的临床指标。此外,对金黄色葡萄球菌敏感的患者的免疫功能的分析为了解葡萄球菌毒力和宿主免疫倾向之间的复杂相互作用提供了独特的机会。虽然众所周知,定量和定性正常中性粒细胞的重要性是对特异性细胞因子(例如功能白介素(IL)-6信号传导)的作用的认识。这篇评论鉴于其对金黄色葡萄球菌的敏感性,对著名的IEI进行了分类,并讨论了相关的相关病理机制。了解易感人群的金黄色葡萄球菌感染中的宿主病原体互动可以为更有效的管理和预防治疗方案铺平道路。最终,增强对此外,这些见解可能有助于确定应该对基础IEI进行筛选的患者。
SARS-CoV-2 可通过胞吞吸收感染细胞,这一过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种方法对羟氯喹口服方案效果不佳,因为脱靶效应伴有显著毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加靶点处的药物浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
抗生素耐药性ESKAPE(屎肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌和肠杆菌属)病原菌是对人类健康的全球威胁。ESKAPE病原菌是院内感染中最常见的机会性致病菌,相当一部分临床分离株对常规抗菌治疗不敏感。因此,能够有效对抗ESKAPE病原菌的创新治疗策略将带来巨大的社会效益和经济效益,并减轻成千上万患者的痛苦。在这些策略中,CRISPR(成簇的规律间隔的短回文重复序列)系统由于其高特异性而受到了格外的关注。遗憾的是,目前还没有基于CRISPR系统的直接抗感染治疗方法。本文就CRISPR-Cas系统在ESKAPE病原体研究中的应用进行综述,旨在为理想的新型药物研究提供方向,为解决后抗生素时代多重耐药菌(MDR)引起的一系列问题提供参考,但多数研究距离临床应用还有一定的距离。