近年来,人工智能和机器学习 (ML) 彻底改变了各个科学技术领域,在计算机视觉、自然语言处理和医疗保健方面取得了重大进步(Esteva 等人,2019 年)。尽管取得了这些进展,但由于大脑活动的复杂性和非平稳性,将这些技术应用于脑电图 (EEG) 信号的分析仍面临独特的挑战。EEG 是实时了解大脑动态的关键工具,常用于临床诊断、认知神经科学和脑机接口(Schomer and Lopes da Silva,2017 年)。然而,EEG 信号的噪声和高维性质使得标准深度学习模型难以有效应用。基础模型(例如基于 Transformer 的架构)在自然语言处理和计算机视觉等领域表现出前所未有的性能(Vaswani,2017 年;Radford 等人,2021 年)对于应对这些挑战大有希望。这些模型在海量数据集上进行预训练,然后针对特定任务进行微调,从而具有广泛的泛化和适应性。然而,它们在脑电图分析中的有效性有限,因为它们往往缺乏捕捉时间精度和生物合理性的机制,而这些对于准确建模脑信号至关重要(Roy et al., 2019)。克服这些限制的一个有希望的方向是将受脑启发的算法融入基础模型。受脑启发的算法,例如脉冲神经网络 (SNN)、分层时间记忆 (HTM) 和生物学上合理的学习机制,如赫布学习,模仿了神经过程的结构和功能(Schmidgall et al., 2024)。这些算法旨在捕捉更类似于实际大脑网络中观察到的时间和空间动态。将这些算法融入基础模型可能会弥合标准深度学习方法与脑电图信号的动态、多维性质之间的差距。因此,在本文中,我们提供了关于如何将脑启发算法与基础模型相结合以增强 EEG 信号分析的观点。我们认为,通过将基础模型的可扩展性和通用性与脑启发算法的时间特异性和生物学合理性相结合,这种混合方法可以解决 EEG 信号处理中的当前局限性。虽然这些方法的整合带来了重大的技术挑战,但它们的协同作用可以为神经科学中更准确、更可解释的 AI 系统提供新的途径。
人工智能的不断发展对生物医学等领域产生了深远的影响,提供了新的研究思路和技术方法。类脑计算是多模态技术与生物医学领域的重要交叉点。本文聚焦人机交互中脑信号解码文本和语音的应用场景,全面回顾了基于深度学习的类脑计算模型,追踪了其演进、应用价值、挑战和潜在的研究趋势。首先回顾了其基本概念和发展历史,将其演进分为近代机器学习和当代深度学习两个阶段,强调了每个阶段在人机交互类脑计算研究中的重要性。此外,从数据集、不同脑信号等五个角度回顾了深度学习在人机交互类脑计算不同任务中的最新进展,并详细阐述了模型中关键技术的应用。尽管类脑计算模型取得了重大进展,但充分发挥其能力仍面临挑战,并为未来的学术研究提供了可能的方向。欲了解更详细信息,请访问我们的 GitHub 页面:https://github.com/ultracoolHub/brain-inspired-computing。
摘要 - 我们提出了Roboverine,这是一种自然主义环境中选择性视觉注意力和场景语法的神经动态机器人主动视觉过程模型。该模型解决了视觉注意的认知机器人模型的重大挑战:结合自下而上的显着性和上下功能指导,公开和掩盖的关注,坐标转换,抑制回报的两种形式,在相机框架之外找到对象,集成空间和基于对象的分析和基于对象的分析,基于空间和基于对象的探索,几乎没有识别的在线学习和自定义的探索和自定义,并自动切换和自定义。此外,它结合了场景语法的神经过程帐户 - 关于场景中对象之间关系的先验知识,以降低搜索空间并提高搜索效率。该模型还展示了桥接两个框架的强度:用于特征提取的深神经网络和用于认知操作的动态场理论。
有趣的是,由于坚固的 TPU 层可确保纤维的完整性,EAF 在 100% 应变下经过 10,000 次循环拉伸后仍能保持稳定的热绝缘性。足够的强度和灵活性使 EAF 适合编织和织成纺织品。因此,用 EAF 制成的毛衣的热导率 (26.9±1.8 mW/m·K) 远低于尼龙 (91.2±1.6 mW/m·K)、聚对苯二甲酸乙二醇酯 (98.3±1.9 mW/m·K) 和羊毛 (38.9±1.1 mW/m·K) 纺织品。在同等隔热性能的情况下,用 EAF 编织的薄毛衣厚度仅为羽绒服的五分之一左右。此外,这种 EAF 编织的薄毛衣还表现出出色的耐洗性和可染性,并且不会明显损害其保暖性,这对于扩大规模至关重要。此外,作者还使用工业剑杆织机来编织
啮齿动物中的一个有趣的共同特征是它们的晶须,他们可以积极地移动以感知环境周围的接触。这些晶须具有各种功能,例如从对象中提取轮廓,为机器人提供位置估算,识别纹理特征以及积极避免碰撞。基本上,它为低计算成本的机器人提供了一种非侵入性的触觉感知,尤其是在非结构化,混乱和视力障碍的环境中有益的。实现实时的被动接触估计并确保强大的机械设计对于这种传感器至关重要。以前的方法通常依赖于6轴力/扭矩传感器[1],压电电阻[2]或其他与力相关的传感器。但是,这些解决方案通常是庞大而挑战的规模。相比之下,磁透射的晶须[3]提供了更紧凑且易于集成的解决方案,能够用平行的晶须形成阵列。尽管如此,基于磁通量在根周围的磁通量变化而准确地对接触运动进行建模并沿晶须轴进行定位,这在很大程度上取决于强大的设计。我们已经构建了一种产生提示联系估计的方法,但是由于缺乏对物体形状的先验知识,基于切向接触状态估计的当前方法仍然遭受动态误差[4]。
摘要 摘要 类脑智能作为脑科学的新兴前沿领域,近年来得到了快速发展,并初步形成了类脑智能产业,属于战略性高端制造业,在智能时代有着广阔的发展前景。未来我国各领域对类脑智能技术及其产业的需求巨大。粤港澳大湾区正积极布局类脑智能技术研发,培育相关产业,实施重大科研项目,新建类脑智能专业机构。目前,大湾区类脑智能产业链已初步形成,科研人才聚集,科技成果转化工作有序开展,知识产权保护、科技创新金融服务等扶持政策相继出台。但还存在不少问题有待改进,如产业链和供应链环节薄弱、应用场景有待拓展、产业技术转化高层次人才短缺等。最后提出五点建议:1)加强脑认知和类脑智能基础研究,紧密结合产业需求;2)完善类脑智能产业链,重点关注集成电路制造、封装测试等环节;3)发展类脑智能产业供应链,提升装备制造业;4)依托粤港澳合作,引进和培养高层次产业人才;5)通过多种方式加强国际合作。
量子计算是一个前沿领域,它利用量子力学原理执行远远超出传统计算机能力的计算。量子计算机利用量子比特,量子比特可以同时存在于多个状态(叠加)中,并通过量子纠缠相互连接。这允许以前所未有的规模进行并行处理,有可能彻底改变密码学、优化和材料科学等领域。物理信息机器学习 (PIML) 将物理定律和原理集成到机器学习模型中,以增强预测能力并提高泛化能力。通过结合量子力学、流体动力学或热力学等领域的约束,PIML 确保模型遵循已知的物理现象,使其在科学计算、工程和环境建模等应用中更加稳健和可解释。量子机器智能的激烈争论可以概括为三个主要方向:
作为靶点驱动药物发现的替代方案,表型驱动方法通过分析表型特征来识别可抵消整体疾病影响的化合物。我们的研究为该领域引入了一种新方法,旨在扩大新治疗药物的搜索空间。我们介绍了 PDGrapher,这是一种受因果启发的图神经网络 (GNN),旨在预测能够逆转疾病影响的组合扰动因素(治疗靶点集)。与学习对扰动的反应的方法不同,PDGrapher 解决了逆问题,即推断实现特定反应所必需的扰动因素,即通过了解哪些扰动会引起期望的反应来直接预测扰动因素。通过编码基因调控网络或蛋白质-蛋白质相互作用,PDGrapher 可以预测看不见的化学或遗传扰动因素,有助于发现新药或治疗靶点。对九种具有化学扰动的细胞系进行的实验表明,PDGrapher 成功预测了多达 13.33% 的额外测试样本中的有效扰动剂,并将治疗目标的排名提高了多达 35%,并且该方法在十个遗传扰动数据集中表现出了竞争力。PDGrapher 的一项关键创新是其直接预测能力,这与传统上用于表型驱动药物发现的间接、计算密集型模型形成鲜明对比,这些模型只能预测由于扰动导致的表型变化。直接方法使 PDGrapher 的训练速度比 scGEN 和 CellOT 等方法快 25 倍,代表着效率的显著飞跃。我们的结果表明,PDGrapher 可以推进表型驱动的药物发现,提供一种快速而全面的方法来识别有治疗用途的扰动。