上下文。高度不饱和的碳链,包括波利尼斯。随着金牛座分子云-1(TMC-1)的Quijote调查的成功,该社区在检测到的碳链数量中看到了“繁荣”。另一方面,罗塞塔(Rosetta)任务揭示了完全饱和的碳氢化合物,C 3 H 8,C 4 H 10,C 5 H 12,(在特定条件下)C 6 H 14与C 7 H 16的C 6 H 14,从Comet 67p/Churyumov-Gerasimenko中。后两者的检测归因于尘埃泛滥的事件。同样,Hayabusa2 Mission从小行星Ryugu返回的样品的分析表明,Ryugu有机物中存在长期饱和脂肪族链。目标。在类似于分子云的条件下,不饱和碳链的表面化学性质可以在这些独立观察结果之间提供可观的联系。但是,仍缺乏基于实验室的研究来验证这种化学反应。在本研究中,我们的目标是通过在10 K.方法下超高真空条件下的C 2 N H 2(N> 1)Polyynes的表面氢化来验证完全饱和的烃的形成。我们进行了两步实验技术。首先,紫外线(≥121nm)辐照C 2 H 2冰的薄层,以将C 2 H 2的部分转化为较大的Polyynes:C 4 H 2和C 6 H 2。之后,将获得的光处理冰暴露于H原子中,以验证各种饱和烃的形成。结果。除了先前研究的C 2 H 6外,我们的研究证实了较大的烷烃的形成,包括C 4 H 10和(暂时)C 6 H 14。对获得的动力学数据的定性分析表明,鉴于表面温度为10 K,HCCH和HCCCCH三键的氢化以可比的速率进行。这可能发生在乌云阶段的典型时间表上。还提出了通过N-和O-O-bearenty Polyynes的表面氢化形成其他各种脂肪族有机化合物的一般途径。我们还讨论了天文学的含义以及与JWST鉴定烷烃的可能性。
上下文。与Vera C. Rubin天文台进行时空的传统调查(LSST)有望通过在包括难以捉摸的星际对象(ISOS)的各种对象上提供前所未有的数据来革新我们对太阳系的理解。检测和分类ISOS对于研究其他行星系统的材料的组成和多样性至关重要。但是,ISO的稀有性和简短观察窗口,再加上LSST生成的大量数据,为其识别和分类带来了重大挑战。目标。本研究的目的是通过探索机器学习算法在模拟LSST数据中的ISO曲目自动化中的应用来解决这些挑战。方法。我们采用了各种机器学习算法,包括随机森林(RFS),随机梯度下降(SGD),梯度增强机(GBMS)和神经网络(NNS),在模拟LSST数据中对ISO Tracklet进行了分类。结果。我们的结果表明,GBM和RF算法在准确区分ISO和其他太阳系对象中优于SGD和NN算法。RF分析表明,在从LSST轨迹分类中,许多派生的Digest2值比直接观察值(右提升,偏差和幅度)更重要。GBM模型达到了最高的精度,召回和F1得分,值分别为0.9987、0.9986和0.9987。结论。这些发现为使用LSST数据开发ISO发现的高效自动化系统奠定了基础,为更深入地理解材料和过程铺平了道路。将我们提出的机器学习方法集成到LSST数据处理管道中,将优化调查识别这些稀有和有价值的对象的潜力,从而及时进行后续观察并进一步表征。
1 斯洛伐克科学院天文研究所,Dubravska cesta 9, 84504 布拉迪斯拉发,斯洛伐克 2 伯尔尼大学应用物理研究所和厄施格气候变化研究中心、微波物理,伯尔尼,瑞士 3 都灵天体物理天文台国家天体物理研究所,Via Osservatorio 20,Pino Torinese 10025,意大利 4 都灵大学 - 物理系,Via Pietro Giuria 1,都灵,TO,意大利 5 捷克科学院天文研究所,Fricova 298,25165 Ondˇrejov,捷克共和国 6 IMCCE,巴黎天文台 - PSL,Denfert Rochereau,Bat。 A.,75014 巴黎,法国 7 苏黎世联邦理工学院粒子物理和天体物理研究所,瑞士 8 陶森大学物理、天文学和地球科学系,美国马里兰州陶森 9 亚利桑那州立大学地球与空间探索学院,美国亚利桑那州坦佩
摘要 数千年来,人类一直梦想着探索地球和太阳系以外的空间。本文讨论了如何利用当今或不远的将来的技术实现这种星际旅行,特别关注推进技术。首先,本文考虑了星际旅行背后的动机,即它将提供有关系外行星和星际介质的大量科学信息。然后,本文讨论了使用传统航天器进行星际旅行时面临的许多挑战,包括距离、时间和能量方面的挑战。然而,许多可能的替代推进技术解决了这些问题。本文讨论的三种技术是离子发动机、核脉冲推进和光帆。本文使用全面的 Pugh 矩阵分析了每种技术的适用性。本文得出结论,光帆是星际任务的最佳选择,因为它们具有高比冲和最终速度。利用光帆技术开发了在 50 年内飞越我们最近的恒星比邻星的基础任务概念。任务概念包括讨论推动光帆所需的激光器、探测器的大小和质量、机载仪器、任务时间表、通信、部署,最后是风险分析。本文最后介绍了创建此类任务所需的未来进步和研究。
背景。要解释星际环境中复杂有机分子 (COM) 的存在,需要彻底了解气相和星际表面相互作用中发生的物理和化学反应。实验和计算机模拟对于建立与这些环境中有机分子形成相关的过程的综合目录至关重要。目的。我们将实验与定制的计算机模拟相结合,首次研究了乙醛 CH 3 CHO(一种重要的冷星际环境中的有机前体)在非晶态固体水中的解吸动力学。我们写这篇论文有两个目标。首先,我们想将这种分子在太空有机分子演化中的作用具体化。其次,我们想提出一个联合方案,基于计算和实验的结合来产生关于解吸量级的定量信息。该方案可用于改进对其他分子的测量。方法。我们利用结合半经验和密度泛函计算的分子动力学模拟,从理论上确定了解吸能和解吸的指数前因子。我们还在无孔非晶态固体水上对乙醛进行了程序升温解吸实验。理论和实验结果的结合使我们能够得出可靠的数量,这些数量对于理解星际冰顶上的星际 COM (iCOM) 的解吸动力学是必需的。结果。发现 CH 3 CHO 从无孔非晶态固体水 (np-ASW) 表面解吸的平均理论和实验解吸能分别为 3624 K 和 3774 K。理论确定的指数前因子为 ν theo = 2。 4 × 10 12 s − 1 ,而通过实验可以将这个量级限制在 10 12 ± 1 s − 1 。结论。将 CH 3 CHO 的解吸能与其他 COM(例如 CH 3 NH 2 或 CH 3 NO)进行比较,可以发现 CH 3 CHO 的挥发性更强。因此,我们认为,考虑到平均结合能,CH 3 CHO 应该在热核的冰升华阶段优先解吸,从而富集该特定组分的气相。此外,整体低结合能表明由于非热效应(即反应性解吸或宇宙射线诱导的解吸),恒星前核可能提前返回气相。这可以解释 CH 3 CHO 在恒星前核气相中的普遍存在。需要专门的实验室和理论努力来证实最后一点。
讨论了使用定向能发射的探测器对附近恒星系统进行飞越调查的任务场景设计。使用固定发射基础设施发射多个探测器,在目标相遇和数据收集后下载科学数据。假设主要目标是以较小的数据延迟(从发射到完全恢复数据所用的时间)可靠地恢复大量收集的科学数据,结果表明存在一个有效边界,在给定延迟的情况下无法增加数据量,在给定数据量的情况下无法减少延迟。对于每次探测器发射,增加此边界上的数据量是通过增加探测器质量来实现的,这会导致探测器速度降低。因此,选择最高可行探测器速度通常无法实现数据量和延迟之间的有效权衡。沿着此边界,到完成数据下载所经过的总距离变化不大,这意味着下载时间大约是发射到目标传输时间的固定比例。由于探测器质量增加时推进时间更长,因此增加数据量会导致发射总能量消耗增加,但具有良好的规模经济效益。任何探测器技术的一个重要特征是将探测器质量与传输数据速率联系起来的缩放定律,因为这会影响有效边界的细节。
摘要 本文介绍了一种由太阳帆推进的小型卫星任务概念,用于拦截并可能与新发现的瞬时星际物体 (ISO) 会合。该任务概念源自一项技术演示任务的提案,该任务旨在高速离开太阳系,最终到达太阳引力透镜的焦点区域。ISO 任务概念是将太阳帆飞向围绕太阳的保持轨道,当 ISO 轨道得到确认后,让帆飞行器达到超过 6 AU/年的逃逸速度。这将允许对新的 ISO 发现做出快速反应,并在距太阳 10 AU 以内进行拦截。两种新的行星际技术可用于实现此类任务:i) 行星际小型卫星,例如 MarCO 任务所展示的卫星,以及 ii) 太阳帆,例如 LightSail 和 IKAROS 任务所展示的卫星,以及为 NEA Scout 和 Solar Cruiser 任务开发的卫星。当前的技术工作表明,在十年内,此类任务已经可以飞行并到达穿越太阳系的 ISO。它可能使首次接触 ISO 时能够进行成像和光谱分析,测量尺寸和质量,从而可能提供有关该物体起源和成分的独特信息。可以使用类似的方法返回样本。
