Loading...
机构名称:
¥ 1.0

上下文。与Vera C. Rubin天文台进行时空的传统调查(LSST)有望通过在包括难以捉摸的星际对象(ISOS)的各种对象上提供前所未有的数据来革新我们对太阳系的理解。检测和分类ISOS对于研究其他行星系统的材料的组成和多样性至关重要。但是,ISO的稀有性和简短观察窗口,再加上LSST生成的大量数据,为其识别和分类带来了重大挑战。目标。本研究的目的是通过探索机器学习算法在模拟LSST数据中的ISO曲目自动化中的应用来解决这些挑战。方法。我们采用了各种机器学习算法,包括随机森林(RFS),随机梯度下降(SGD),梯度增强机(GBMS)和神经网络(NNS),在模拟LSST数据中对ISO Tracklet进行了分类。结果。我们的结果表明,GBM和RF算法在准确区分ISO和其他太阳系对象中优于SGD和NN算法。RF分析表明,在从LSST轨迹分类中,许多派生的Digest2值比直接观察值(右提升,偏差和幅度)更重要。GBM模型达到了最高的精度,召回和F1得分,值分别为0.9987、0.9986和0.9987。结论。这些发现为使用LSST数据开发ISO发现的高效自动化系统奠定了基础,为更深入地理解材料和过程铺平了道路。将我们提出的机器学习方法集成到LSST数据处理管道中,将优化调查识别这些稀有和有价值的对象的潜力,从而及时进行后续观察并进一步表征。

使用LSST

使用LSSTPDF文件第1页

使用LSSTPDF文件第2页

使用LSSTPDF文件第3页

使用LSSTPDF文件第4页

使用LSSTPDF文件第5页

相关文件推荐

2024 年
¥1.0
2020 年
¥3.0
2021 年
¥2.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
1900 年
¥1.0
1900 年
¥1.0
2022 年
¥1.0
2025 年
¥1.0
2022 年
¥1.0
2021 年
¥1.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥1.0
2023 年
¥1.0
2021 年
¥2.0
2020 年
¥1.0
2025 年
¥2.0
2024 年
¥2.0
2015 年
¥1.0
2024 年
¥2.0
2021 年
¥1.0
2023 年
¥1.0
2020 年
¥1.0
1900 年
¥8.0
2018 年
¥26.0
2018 年
¥6.0
2022 年
¥1.0
2017 年
¥12.0