Loading...
机构名称:
¥ 2.0

我们研究统计亚组公平性审核分类的问题。Kearns等。 [20]表明,审核组合子组的公平性与不可知论的学习一样困难。 基本上所有关于纠正歧视子组的统计量度的工作都假定了该问题的甲骨文,尽管没有有效的算法已知。 如果我们假设数据分布是高斯,甚至仅仅是对数 - concave,则最近的工作线发现了半个空格的有效的不可知论学习算法。 不幸的是,Kearns等人的减少。 是根据弱的,distribution free-freem学习而提出的,因此没有建立对诸如对数 - concave分布之类的家庭的联系。 在这项工作中,我们在审核高斯分布方面给出积极和负面的结果:在积极方面,我们提出了一种替代方法来利用这些进步的不可知论学习,从而获得了第一个多项式时间近似方案(PTA),以审核非审计的非整合统计学概念,我们显示出均超过统计学的特征:高斯。 在负面,我们在加密假设下,没有多项式时间算法可以保证一般半空间亚组的任何非平凡的审计,即使在高斯特征分布下也可以保证。Kearns等。[20]表明,审核组合子组的公平性与不可知论的学习一样困难。基本上所有关于纠正歧视子组的统计量度的工作都假定了该问题的甲骨文,尽管没有有效的算法已知。如果我们假设数据分布是高斯,甚至仅仅是对数 - concave,则最近的工作线发现了半个空格的有效的不可知论学习算法。不幸的是,Kearns等人的减少。是根据弱的,distribution free-freem学习而提出的,因此没有建立对诸如对数 - concave分布之类的家庭的联系。在这项工作中,我们在审核高斯分布方面给出积极和负面的结果:在积极方面,我们提出了一种替代方法来利用这些进步的不可知论学习,从而获得了第一个多项式时间近似方案(PTA),以审核非审计的非整合统计学概念,我们显示出均超过统计学的特征:高斯。在负面,我们在加密假设下,没有多项式时间算法可以保证一般半空间亚组的任何非平凡的审计,即使在高斯特征分布下也可以保证。

使用

使用PDF文件第1页

使用PDF文件第2页

使用PDF文件第3页

使用PDF文件第4页

使用PDF文件第5页

相关文件推荐

2015 年
¥1.0
2024 年
¥2.0
2021 年
¥1.0
2023 年
¥1.0
2020 年
¥1.0
1900 年
¥8.0
2018 年
¥26.0
2018 年
¥6.0
2022 年
¥1.0
2017 年
¥12.0
2021 年
¥1.0
2023 年
¥5.0
2023 年
¥1.0
2025 年
¥1.0
2021 年
¥2.0
2024 年
¥1.0
2020 年
¥1.0
2023 年
¥2.0
2022 年
¥2.0
2023 年
¥1.0
2021 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2007 年
¥1.0
2024 年
¥1.0
2022 年
¥1.0