Hamda Al-Ali 是伦敦帝国理工学院帝国等离子推进实验室的博士候选人。她的研究重点是新型高功率等离子推进系统的设计和实验鉴定:球形托卡马克推进器。这项创新技术的灵感来自球形托卡马克和磁约束聚变的工作原理。推进器受益于高推进剂电离和利用率,并与多种推进剂兼容,包括水等分子绿色推进剂。球形托卡马克推进器的无电极设计消除了与电极存在相关的问题,例如电极腐蚀和阴极中毒,从而延长了其使用寿命,同时提供了高比冲,以增加有效载荷质量分数并降低航天器发射成本。这些特性和能力使其成为深空探索任务的有吸引力的候选者。这项技术将实现高效的行星际空间探索,并使星际旅行更加可行。
我们如何概念化先进外星文明的人工制品?在最近一项发人深省的研究中,考伊(Cowie,2022 年)从哲学的角度考虑了星际小行星状物体 1I/2017 U1 ' Oumuamua 奇异特性的人工制品解释。他考虑了著名天体物理学家亚伯拉罕·勒布(Abraham Loeb)提出的假设,即这个小物体实际上是先进外星文明的人工制品,其异常特性最好解释为它是太阳帆(Bialy 和 Loeb,2018 年;Loeb,2021 年)。考伊以精湛的方式分析了各种隐藏的假设和论证陷阱。这样的研究非常重要,而且随着我们在天体生物学方面的观察知识和理论成熟度的提高,其重要性可能会增加(另见 Cowie,2021 年)。在人们对搜寻地外文明 (SETI) 研究兴趣重新燃起的时代(现在的新名称是“寻找技术特征”;Wright
摘要。大规模定向能为各种领域提供了彻底变革的可能性,包括实现相对论飞行的能力,这将使首次星际任务以及快速的行星间运输成为可能。此外,同样的技术开辟了广阔的任务空间,允许从远程光束功率到远程航天器和前哨站到行星防御到远程成分分析和操纵小行星等各种选择。定向能依赖于光子学,光子学与电子学一样是一个指数级增长的领域,由多种经济利益驱动,可以实现太空探索和能力的变革性进步。为了开始充分利用这种能力,重要的是不仅要了解它带来的可能性,还要了解所涉及的技术挑战,并制定利用这种选择的合理路线图。这种能力既与传统推进相协同,又为目前传统能力无法实现的未来提供了一条道路。
水在创造和维持生命方面发挥着重要作用,可视为地球上最重要的分子。地球上的水以液态和结晶冰的形式存在,但宇宙中的大部分水以无定形状态存在于星际颗粒表面 1 。第一种人造无定形水于 1935 年通过气相沉积法制成 2 ,但至今,无定形水的最基本特性之一:玻璃化转变温度,仍不清楚。根据制备方法 3 ,无定形水有多种形式。无定形水是通过压缩冰 I h 以获得高密度无定形形式 (HDA) 4 而产生的。随后,通过在环境压力下重新加热,可以将这种 HDA 形式转化为低密度无定形形式 (LDA)。另一种通常称为无定形固体水 (ASW) 的形式可以通过气相沉积法产生,存在于星际尘埃颗粒中 1 。还可以通过在预冷至 77 K 5 的 Cu 基板上沉积蒸汽,在实验室中生成和研究 ASW。最后,通过将悬浮的液态水滴以超音速喷射到预冷至 77 K 6 的 Cu 基板上,冷却可生成超淬火玻璃水 (HGW)。这些非晶态水是否可以正式被视为玻璃状,取决于它们是否表现出可测量的玻璃化转变。在这方面,水的玻璃化转变话题已经陷入争议超过四十年 7-14 。根据对退火 HGW 的直接量热测量,水的玻璃化转变温度 T g 为 136 K 已被广泛接受 6 。还发现该值与二元水溶液的 T g 外推一致 7 。然而,后来有人认为,根据对多个超淬玻璃的预 T g 放热曲线的测量,正确的 T g 应该更接近 165 K 10 。然后得出结论,由于在以接近 20 K/min 的常规速率加热时快速结晶,因此无法直接测量非晶态水的 T g 。进一步有人认为,在 136 K 观察到的吸热实际上是先前退火程序产生的阴影 T g 11 。这与以下观察结果一致:136 K 下微弱吸热的幅度只是预期加热幅度的一小部分
摘要 —卫星网络是星际航行的第一步。它可以为地球上的任何地方提供全球互联网连接,而由于地理可达性和高成本,大多数地区无法通过地面基础设施访问互联网。航天工业正在经历大型低地球轨道卫星星座的兴起,以实现普遍连接。研究界也迫切需要进行一些领先的研究来弥合连通性鸿沟。研究人员现在通过模拟进行工作,这远远不够。然而,真实卫星上的实验受到太空技术高门槛的阻碍,例如部署成本和未知风险。为了解决上述困境,我们渴望为普遍连接做出贡献,并建立一个开放的研究平台——天算星座,以支持真实卫星网络的实验。我们讨论了天算星座可能带来的好处。我们提供了两个案例研究,它们已经部署在天算星座的两颗实验卫星上。
我有很多新的令人兴奋的话题要报告!最近有几个新同事加入了我们:苏珊·克拉克(Susan Clark)教授在星际媒介中研究磁场,因为您会在这里发现她的作品。Ben Feldman教授是一位冷凝的实验家,有兴趣研究降低尺寸的材料中新兴的量子电子状态。他还开发了新工具来调查它们,并在大流行期间设法在斯坦福大学创办了新的实验室。乔纳森·西蒙(Jonathan Simon)教授被芝加哥大学(University of Chicago)诱使斯坦福大学(与应用物理学的戴维·舒斯特(David Schuster)一起),并正在Varian Building建立广泛的实验室,以在Quantum设备中启动实验计划。Jon及其计划是大学新Q-Farm倡议的核心组成部分,该计划是由大学开发的,旨在在不同部门和学校的量子科学技术领域增强活动。最后,该学院的最新成员是Trithep Devakul教授,他是一个凝结的物质理论家,从本季度开始在我们部门。
二、推进系统的技术现状与问题 现阶段航天推进技术,唯一实用的推进系统是化学推进系统和电推进系统,它们都是基于质量的排出来引起动量推力。目前的推进系统广泛采用基于动量守恒定律的动量推力,由于其最大速度受气体有效排气速度与质量比的自然对数的乘积限制,其速度太慢,无法使飞船实现行星际旅行和恒星际旅行,因此一直亟待推进方式的突破。 2.1动量推力(反作用推力) 如上所述,目前除太阳帆和光帆外的各种推进系统都是基于动量守恒定律的。对于基于动量守恒定律的动量推力,其最大速度(V)受气体有效排气速度(w)与质量比的自然对数(R)的乘积限制。
本文提供了Alpha的概述,Alpha是一项快速发展的低成本立方体任务,可验证高度逆转型材料以进行轻型推进。由康奈尔大学太空系统设计工作室的学生设计,集成和测试,该任务展示了许多关键技术,这些技术使下一代能力能够进行太空探索。尤其是本文侧重于芯片组的新应用(革兰氏量表上的芯片技术)作为验证Alpha的帆轨道和态度动态的一种手段。其他创新包括一个完全3D打印的结构,以启用快速,便宜的原型制作,这是一种围栏虹膜调制解调器,绕开了对地面电台无线电设备的需求,反式式流动式帆材材料,可提供激光照明的更确定性的动力,并仅利用态度控制态度和态度控制态度控制态度和巨镜控制。除了这些近期的技术示范外,Alpha是Space全息图的第一个展览之一,该媒介在星际旅行中的多个角色中表现出长期的承诺。
• Adam Steinberg 教授被选为 AE 学院研究生项目的新副主席。他负责管理研究生项目、扩大咨询范围、审查课程并招募顶尖人才。他还因其在燃烧方面的杰出贡献而当选为燃烧研究所研究员。 • Joseph Oefelein 教授被选为 AE 学院本科生项目的副主席。在他的职位上,他负责管理咨询并支持本科生计划。 • George Kardomateas 教授因其在航空航天进步中的杰出工作而被美国机械工程师学会评选为 2022 年圣路易斯精神奖章获得者。 • Suresh Menon 教授因其在航空燃烧工程方面的杰出贡献而被授予 2023 年美国航空航天学会 (AIAA) 推进剂和燃烧奖。 • Timothy Lieuwen 教授和高级研究工程师 Benjamin Emerson 等凭借其论文《同时进行 OH、CH20 和近喷流动力学的流场成像》获得 AIAA 2022 年最佳论文奖。 • Vishal Acharya、Graeme Kennedy 和 Juergen Rauleder 被 AIAA 选为 2023 级副研究员 • Mitchell LR Walker II 教授兼 John W. Young 主席被任命为 AIAA 研究员。他是第 15 位获得这一顶级荣誉的技术教员。 • Dimitri Mavris 被任命为国际航空科学理事会 (ICAS) 主席。他的任期为两年,致力于执行 ICAS 任务。 • 陈永新教授及其团队凭借《具有树结构成本的多边际最优传输和薛定谔桥问题》的论文荣获工业与应用数学学会最佳论文奖。 • Stephen Ruffin 教授被选为佐治亚理工学院专业教育学术事务副院长。 • Wenting Sun 教授被燃烧研究所和爱思唯尔评选为 Hiroshi Tsuji 早期职业研究奖。该奖项授予在基础或应用燃烧科学方面表现卓越并在其领域取得进步的早期职业研究人员。 • John Christian 教授凭借《星际任务的导航和恒星识别》成为 2023 年 Canopus 星际写作杰出奖(出版短篇非小说类)提名作者之一。 • Marilyn Smith 教授被选为皇家航空学会 (RAeS) 2023 年兰彻斯特讲座主讲人。
摘要。本文基于材料科学和资源利用的基本原理和原则。原位资源利用率(ISRU)可以充分利用太空中的材料来产生人类生存甚至星际迁移计划所需的资源。Bio-based biofuel production solutions can address human consumption in space exploration while allowing the production of fuels in a sustainable manner, with minimal inputs and producing cleaner, more environmentally friendly fuels.ISRU biofuel production can be achieved by directly converting inorganic carbon (atmospheric CO2) into target compounds as biofuels by autotrophic microorganisms, or by fixing carbon and then use将生物量或复杂底物转化为靶化合物的代谢工程,完成了两步生物燃料生产过程。在本文中,我们通过ISRU调查了在火星上生产生物燃料生产的潜在微生物细胞工厂,从而导致了一些相关的突破和发现。本文通过一系列研究推进了研究内容的发展。在本文中,我们研究并优化了基于基本燃料性能研究的新能源燃料的使用。根据先前的基础研究,本文在能源研究领域提供了一种新的思维和研究方式。