Ÿ Pankaj Jain,主任(雪城大学博士):天体物理学和宇宙学、射电天文学、宇宙射线、X 射线天文学Ÿ Ishan Sharma(康奈尔大学博士):行星科学、粒状小行星;力学、应用数学Ÿ Amitesh Omar(班加罗尔 RRI;JNU 博士):星系天体物理学、仪器、光学和射电天文学Ÿ Sharvari Nadkarni-Ghosh(康奈尔大学博士):理论宇宙学、行星科学、非线性动力学Ÿ Kunal P. Mooley(加州理工学院、国家射电天文台博士):天体物理瞬变、喷流、致密物体、银河系中心、宇宙中的生命。 Ÿ Prashant Pathak(博士,综合研讨大学):系外行星的特征:直接成像、透射光谱。自适应光学和波前控制技术。地面和太空光学及红外仪器 Ÿ Kartick C. Sarkar(博士,印度科学研究所和拉曼研究所):星系的形成和演化、星际介质、天体流体动力学、银河反馈、辐射传输 Ÿ Deepak Dhingra(博士,布朗大学):行星遥感和地质学 Ÿ JS Yadav(博士,库鲁克谢特拉大学):X 射线天文学、空间探测器和仪器、宇宙射线 Ÿ Avinash Deshpande(博士,印度理工学院孟买分校/RRI):射电天文学、脉冲星、射电瞬变、星际介质、仪器和信号处理
星际复杂有机分子 (iCOM) 的形成是天体化学中的热门话题。试图重现观测结果的主要范例之一是假设 iCOM 是在覆盖星际尘埃颗粒的冰幔上由于自由基 - 自由基偶联反应而形成的。我们通过计算量子力学方法研究冰表面上 iCOM 的形成。具体来说,我们研究了涉及 CH 3 + X 体系 (X = NH 2 、CH 3 、HCO、CH 3 O、CH 2 OH) 和 HCO + Y (Y = HCO、CH 3 O、CH 2 OH) 以及 CH 2 OH + CH 2 OH 和 CH 3 O + CH 3 O 体系的偶联和直接氢提取反应。我们利用密度泛函理论计算了两个冰水模型(分别由 33 个和 18 个水分子组成),计算了这些反应的活化能垒以及所有研究的自由基的结合能。然后,我们利用反应活化能、解吸能和扩散能以及通过 Eyring 方程推导的动力学估算了每个反应的效率。我们发现表面上的自由基 - 自由基化学并不像通常假设的那么简单。在某些情况下,直接的氢提取反应可以与自由基 - 自由基偶联竞争,而在其他情况下,它们可能包含较大的活化能。具体而言,我们发现 (i) 乙烷、甲胺和乙二醇是相关自由基 - 自由基反应的唯一可能产物;(ii) 乙二醛、甲酸甲酯、乙醇醛、甲酰胺、二甲醚和乙醇的形成可能与各自的氢提取产物竞争; (iii)乙醛和二甲基过氧化物似乎不太可能是谷物表面产物。
• 发射日期 • 飞越木星的日期 • 飞越土星的日期 • 进入星际空间的日期 • 预计到达奥尔特云的日期 ☐ 探测器如何供电? ☐ 探测器如何与地球通信? ☐ 关于航海者 1 号的三 (3) 个有趣事实 可使用的网站: 航海者 1 号维基百科页面 https://en.wikipedia.org/wiki/Voyager_1 微小网址:http://tinyurl.com/p2adehn 航海者仪器 https://voyager.jpl.nasa.gov/mission/spacecraft/instruments/ 微小网址:http://tinyurl.com/ybojsxxl 航海者时间线 https://voyager.jpl.nasa.gov/mission/timeline/#event-the-first-human-made-object-in- interstellar-space 微小网址:http://tinyurl.com/y9npzwm6 航海者黄金唱片 https://voyager.jpl.nasa.gov/golden-record/whats-on-the-record/ 微小网址:http://tinyurl.com/yb8rbfrc
根据对模拟论证最常见的解释,我们很可能生活在祖先模拟中。有趣的是,在所有模拟空间中,某些模拟家族是否比其他模拟家族更有可能出现。我们认为,计算复杂性给出了一个自然的概率度量:更简单的模拟更有可能运行。值得注意的是,这使我们能够从我们生活在模拟中的事实中提取实验预测。例如,我们表明,人类很可能无法实现星际旅行,人类也不会在宇宙中遇到其他智慧物种,从而解释了费米悖论。另一方面,任何这些预测的实验证伪都将构成反对我们的现实是模拟的证据。
大约45亿年前的太阳系形成,我们的太阳系从茂密,旋转的星际气体和尘埃开始了。这种天体舞蹈的触发因素可能是附近的超新星1,其爆炸性冲击波启动了这种原始云的崩溃。随着重力的成立,云凝结并扁平化为一个被称为太阳星云的旋转盘。最终,材料聚集在中心,形成了我们的阳光,而周围的碎屑聚集成原月球磁盘,为形成行星,月亮,小行星和彗星的形成奠定了基础。由物理定律和机会的奇妙塑造的这种创造的巨大景象为人类开始的非凡探索旅程奠定了基础。
核聚变长期以来一直被认为是一种理想的太空推进方法,因为它具有极高的燃料比能(比最好的化学燃料高 + 2 # 10 6)和排气速度(+ 4% 的光速,而最好的化学燃料为 + 4 公里/秒)。这种高性能将允许在参与研究人员的一生中快速完成行星际任务以及星际任务。1然而,聚变推进存在两个主要困难:点燃自持聚变链式反应的困难以及反应产生的大量电离辐射,这需要相当大的屏蔽质量来抵御这种辐射。1本摘要介绍了一种独特但众所周知的核物理技术“自旋极化”的能力,它可降低点火要求和航天器必须处理的电离辐射通量。
电磁辐射是太空中丰富的能源,可为行星际和恒星际任务提供温和而持久的推力。微型激光和太阳能推进平台的早期成功证实了它们在近地和深空探索中的潜力,尽管实际实现可靠的光子设备并非易事。出于对太空探索的兴趣,本简短报告概述了这一新兴领域的最新成就。我们重点介绍了几种通过光子-物质相互作用产生推力的光致机制,例如光子压力和烧蚀、光梯度力、光诱导电子发射等,这些机制可能会对太空推进产生技术影响。最后,我们概述了这些机制在实际应用中面临的一些关键挑战和可能的解决方案,并提出了光子推进领域未来发展的分类和指导原则。
摘要 20 世纪 80 年代初,萨根和蒂普勒就费米悖论的解释展开了激烈的争论,但并未分出胜负。萨根根据哥白尼原理主张外星智能的存在,而蒂普勒则根据奥卡姆剃刀原理主张外星智能的不存在。蒂普勒的立场是对类似但更早的哈特宣言的扩展。然而,自我复制星际机器人探测器在蒂普勒论证中发挥的作用至关重要。任何具备技术能力的物种都会发展自我复制技术,作为以最少的投资探索太空和整个银河系的最经济手段。没有证据表明我们的太阳系包括小行星带内存在此类探测器,因此外星智能不存在。这是一个强有力且令人信服的论点。反驳的论据都很薄弱,包括萨根的社会学解释。我们提出一个哥白尼论点,即外星智能并不存在——人类如今正在开发自我复制技术。作为通用原位资源利用 (ISRU) 能力的一部分,我们正在开发利用外星资源(包括电动机和电子设备)3D 打印整个机器人机器的能力。我们拥有 3D 打印电动机,可以利用每个恒星系统中都应有的外星材料。从类似的材料中,我们找到了一种 3D 打印神经网络电路的方法。从我们的工业生态中,自我复制的机器和通用构造器都是可行的。我们详细描述了如何利用小行星资源制造出自我复制的星际飞船。我们描述了小行星材料处理的技术特征(预计在大多数恒星系统中都很常见),以及某些类型的粘土和其他碎屑材料的过量生产。自我复制技术正在开发中,而且即将问世——如果人类正在追求自我复制技术,那么根据哥白尼原理,其他任何精通技术的物种也会这样做。没有证据表明他们已经这样做了。
摘要 20 世纪 80 年代初,萨根和蒂普勒就费米悖论的解释展开了激烈的争论,但并未分出胜负。萨根根据哥白尼原理主张外星智能的存在,而蒂普勒则根据奥卡姆剃刀原理主张外星智能的不存在。蒂普勒的立场是对类似但更早的哈特宣言的扩展。然而,自我复制星际机器人探测器在蒂普勒论证中发挥的作用至关重要。任何具备技术能力的物种都会发展自我复制技术,作为以最少的投资探索太空和整个银河系的最经济手段。没有证据表明我们的太阳系包括小行星带内存在此类探测器,因此外星智能不存在。这是一个强有力且令人信服的论点。反驳的论据都很薄弱,包括萨根的社会学解释。我们提出一个哥白尼论点,即外星智能并不存在——人类如今正在开发自我复制技术。作为通用原位资源利用 (ISRU) 能力的一部分,我们正在开发利用外星资源(包括电动机和电子设备)3D 打印整个机器人机器的能力。我们拥有 3D 打印电动机,可以利用每个恒星系统中都应有的外星材料。从类似的材料中,我们找到了一种 3D 打印神经网络电路的方法。从我们的工业生态中,自我复制的机器和通用构造器都是可行的。我们详细描述了如何利用小行星资源制造出自我复制的星际飞船。我们描述了小行星材料处理的技术特征(预计在大多数恒星系统中都很常见),以及某些类型的粘土和其他碎屑材料的过量生产。自我复制技术正在开发中,而且即将问世——如果人类正在追求自我复制技术,那么根据哥白尼原理,其他任何精通技术的物种也会这样做。没有证据表明他们已经这样做了。