结论:尿道憩室癌是尿道的一种罕见且高度侵略性的恶性肿瘤,预后不良。隐藏了尿道憩室癌的发作,其临床表现是非专业和多样的。术前诊断具有挑战性,成像研究和膀胱镜检查是尿道憩室癌的主要术前诊断方法。病理学和免疫组织化学是确认诊断的基础。目前,国际上没有针对女性尿道憩室癌的统一治疗方案。对于没有远处转移的尿道憩室癌的女性患者,手术仍然是主要治疗方法。对于远处转移的患者,可以考虑手术,化学疗法和放射疗法的组合。基因测试和靶向免疫疗法为将来的治疗提供了新的方法。
该机构订阅了以下电子资源:1. 电子期刊 2. e-Shodh Sindhu 3. Shodhganga 会员资格 4. 电子书 5. 数据库 6. 电子资源远程访问
2型糖尿病(T2D)是全球糖尿病的主要原因,并且正在迅速增加,尤其是在青年中。它说明了美洲≥20岁的成年人的大多数糖尿病死亡,其中2型糖尿病负责大多数疾病负担。在全球近几十年以来,青少年和年轻人的2型糖尿病的发病率和负担都增加了。社会经济地位较低的国家的发病率和负担最高,而女性的死亡率和疾病负担通常比30岁以下的男性更高。早期诊断和管理对于延迟进展至关重要,但是基于葡萄糖阈值和糖化血红蛋白的当前诊断标准具有局限性。最近的分析表明,糖尿病前期会增加癌症的风险。迫切需要更好地识别高风险个体的诊断标准。本文讨论了当前标准的局限性,并探讨了替代方法和未来的研究方向。
○ 例如,某公司估计所售产品含有 40% 重量的生物基碳,则应说明如何根据已知的生产过程输入或公司原材料供应商提供的信息得出 40% 的值。 ● 说明如何利用材料的属性进行 GHG 排放清单计算(例如,对每种材料类型的相关范围 3 类别使用适当的排放因子)。 ● 遵循 SBTi 和 GHG 议定书中针对范围 1、2 和 3 的所有适用 GHG 核算要求(例如,核算生物基材料的全部上游影响,包括土地部门的排放)。 ● 公司不得使用通过账簿和索赔方法生成的、在市场/交易所交易的、和/或从不同公司转移的或从同一公司内的不同站点转移的信用或证书。
支持AI的合成生物学具有巨大的潜力,但也显着增加了生物风格,并带来了一系列新的双重使用问题。鉴于通过结合新兴技术所设想的巨大创新,随着AI支持的合成生物学可能将生物工程扩展到工业生物制造中,因此情况变得复杂。但是,文献综述表明,诸如保持合理的创新范围或更加雄心勃勃的目标以促进巨大的生物经济性不一定与生物安全对比,但需要齐头并进。本文介绍了这些问题的文献综述,并描述了新兴的政策和实践框架,这些框架横渡了指挥和控制,管理,自下而上和自由放任的选择。如何实现预防和缓解未来AI支持的Biohazards,故意滥用或公共领域的预防和缓解未来的生物危害的方法,将不断发展,并且应不断发展,并且应出现自适应,互动方法。尽管生物风格受到既定的治理制度的约束,而且科学家通常遵守生物安全方案,甚至实验性,但科学家的合法使用可能会导致意外的发展。生成AI实现的聊天机器人的最新进展激起了人们对先进的生物学见解更容易获得恶性个人或组织的恐惧。鉴于这些问题,社会需要重新考虑应如何控制AI支持AI的合成生物学。建议可视化手头挑战的建议方法是whack-a摩尔治理,尽管新兴解决方案也许也没有那么不同。
我们回顾了具有等速储层的晚期绝热压缩空气存储厂的分析模型的文献,重点是可以从模型中提取的见解。审查表明,文献中缺少拥有绝热储层,绝热涡轮机械以及没有油门的植物的模型。假设植物在准稳态状态下运行,我们继续得出这种模型,可以将空气视为热量和热完美的气体,并且热能存储单元不含热和压力损失。模型导致关键性能指标的封闭式表达式,例如植物效率和体积能量密度,就组成效率和压力比而言。这些表达式的推导基于涉及温度和压力的同时时间变化的近似积分。近似值导致相对误差小于1%。模型表明压缩和扩展工作,植物效率和最高工艺温度显示最小。该模型还表明,对于给定的非二维存储容量和最大储层压力,最小化最大过程温度的植物的最大效率大约等于最大化效率的植物的最低效率。对于具有绝热洞穴和绝热热能储存单元的两阶段工厂,我们的分析模型预测体积能量密度在4.76%以内,表明它足够准确,可以用于初始植物设计。
摘要 我们计划使用 NIRSpec 积分场单元 (IFU) 拍摄真正的太阳系气态巨行星类似物、标志性的 eps Eridani b 的第一张图像和光谱。Eps Eri b 是一颗已知的径向速度行星,围绕附近的类太阳恒星 (K2V) 运行,轨道距离约为 3.5 au(周期为 7.3 年),其动态质量介于土星和木星之间(0.57-0.78 MJup),这意味着它可以直接与太阳系气态巨行星进行比较。这颗青少年(4 亿至 8 亿年)亚木星是独一无二的,因为就半长轴、质量和年龄而言,它位于凌日和直接成像的系外行星之间。到目前为止,该参数空间区域无法进行光谱表征。此外,第 3 周期是观察该行星的最佳时间,因为它处于最远的投影分离状态,这种情况每 4 年才发生一次。我们将针对这颗冷亚木星的峰值通量(~140-215 K)获得 3-5 微米的 R~2,700 光谱,并首次测量其亮度、有效温度和成分(C/H、O/H、N/S)。由于第 1 周期数据证明 NIRSpec IFU 可以达到优于 JWST 日冕仪的对比度(35 分钟内 1'' 处 1e-6),因此可以直接探测到 eps Eri b。观察描述我们建议使用 NIRSpec 积分场单元(IFU;G395H/F290LP;2.87 - 5.27 微米)拍摄 eps Eridani b 的第一张图像和高分辨率光谱(R=2,700)。
印度的太空探索之旅有着深厚的根源,可以追溯到古代,当时宇宙知识就被记录在古代经文中。然而,直到 5 世纪,随着阿耶波多 (Aryabhata) 的贡献,天文学出现了一种更精确的数学方法,使其摆脱了神秘主义和对日历的关注。后来,巴斯卡拉二世 (Bhaskara II) 和瓦拉哈米希拉 (Varahamihira) 等学者提出了这些见解,为现代太空探索的成就铺平了道路。印度天文学家的影响并没有就此结束,因为他们的太空探索继续成为当代天文学家的一部分。印度国家空间研究委员会 (INCOSPAR) 于 1962 年成立,由维克拉姆·A·萨拉巴伊 (Vikram A. Sarabhai) 博士领导。同年,Thumba 赤道火箭发射站也在特里凡得琅附近建立。印度的太空探索是世界上最古老的探索之一,在国家发展中发挥了至关重要的作用。印度航天局迄今已完成 125 次航天器任务,其中包括三颗纳米卫星和一颗微型卫星;94 次发射任务;两次再入任务;来自 34 个国家的 431 颗外国卫星;15 颗学生卫星;以及三颗由印度私营企业制造的卫星。