ACF非洲气候基金会afcfta非洲大陆自由贸易区AFDB非洲开发银行(集团)非洲增长机会法案ANRC非洲自然资源中心ATI非洲转型中心ATI非洲转型指数bnef Bloombergnef byd byd byd catl catl catl catl catl catl catl catl catl catl catl catl cat。环境,社会和治理等欧洲欧盟欧盟电动汽车电力汽车fta自由贸易协定温室气体GVCS全球价值链国际能源机构IRA通货膨胀降低行为IRENA IRENABLE RENEWABLE ENSTRACH ENSICY ANCEL ACTABLE LCO LITHIUM COBALT OXIDE LFP IRA磷酸盐磷酸盐磷酸盐lib lithium liTs lmsporemery of Manger oxery Manger氧化物,锂镍钴氧化铝NMC锰氧化物OEMS OEMS原始设备制造商研发研究与开发RMIS RMIS资源管理信息系统RVC地区价值链SEZ特殊经济区联合国联合国联合国联合国联合国联合国联合国联合国联合国非洲非洲非洲经济委员会
高温热能储藏越来越重要,它是集中太阳能发电厂的关键组成部分。包装的床储藏代表经济上可行的大规模存储解决方案。目前的工作涉及填充的床热储能的分析和优化。评估了准动态边界条件对存储热力学性能的影响。存储的级别成本是创新的,用于热量存储设计。提出了一种设计包装床热储能的完整方法。这样做,对工业规模填充床进行了全面的多客观优化。结果表明,准动态边界条件导致降低约5%的存储热效率。相反,研究的设计变量对TES LCO的优化的影响仅受准动力边界条件的影响略有影响。纵横比在0.75到0.9之间将最大化存储热效率,而低初步效率在0.47左右会最大程度地减少存储的水平成本。这项工作证明了在优化热能stor年龄时应考虑准动态边界条件。存储的级别成本也可以被视为填充床热能存储的更可靠的性能指标,因为它较少依赖于可变边界条件。
喷射是一种自限制的心律失常,通常在心脏手术后的72小时内发生,并在8天内解决。这是一种不断的心动过速,通常带有AV障碍性,导致在降低心肌氧供应的情况下,心肌工作量和氧气消耗增加的有害组合。由于心房收缩期贡献的损失以及对心动过速导致的舒张期填充时间缩短,因此由于心室填充受损而减少全球心脏输出。这可能会迅速导致威胁性低心输出态状态(LCO)的生命,尤其是如果患者先前被造成血流动力学损害。喷射像自动心动过速一样,因此通常不会对DC休克,腺苷或超速起搏。治疗旨在通过起搏降低和恢复AV同步。心率下降将减少心肌氧的需求,同时改善心肌氧递送。管理的基本原理包括足够的镇痛和镇静,校正任何电解质不平衡以及减少肌力的减少。降低射流速率的最有效的治疗方法是适度的体温过低和静脉静脉内龙酮的组合。一旦降低速率,就可以通过比心律失常的速度快速起搏来实现AV同步。ECLS保留用于威胁对低温和IV胺碘酮的抗生命。
汽车行业在过去100年中经历了快速发展,并为人们的生活带来了极大的便利。1然而,全球电动汽车(电动汽车)无疑是解决环境问题增加的解决方案,2随着高能量密度,低成本和耐用的储能系统的发展,一个关键的推动剂。电动汽车的早期电池技术包括铅酸和镍金属氢化物化学,以及诸如氢燃料电池和超级电容器之类的技术。3然而,锂离子电池(LIBS)是电动汽车的当前首选技术。在这里,常见的阴极化学分配包括氧化锂(LCO),氧化锰锂(LMO),磷酸锂(LFP),锂镍钴氧化铝(NCA)和锂镍 - 锰镍 - 锰 - 少量氧化物(NMC),并有效地相比之下。电池化学。由于用法依赖性降解和LIB的不稳定性,在某些操作窗口之外,实时嵌入电池管理系统(BMS)对于维持安全性和可靠性至关重要。4 BMS的关键目标是监视关键状态,最小化降解状态,5个平衡单元6并检测故障。7 LIB中的研究和开发传统上专注于多个长度尺度的电极和电解质开发,但是8将这些见解与BMS的设计联系起来仍然是迫切的需求。9电荷状态(SOC)10是关键状态之一,表示细胞中的剩余能力,而状态为
2W/3W 两轮或三轮车 ACC 先进电池化学 AI 人工智能 Al2O3 氧化铝 BESS 电池储能系统 BEV 电池电动汽车 BMS 电池管理软件 CAES 压缩空气储能 CAGR 复合年增长率 CCl4 四氯化碳 CERT 能源研究与技术委员会 CES 化学储能 CO2 二氧化碳 CSIR 科学与工业研究理事会 CSIRO 联邦科学与工业研究组织 D&D 开发与演示 DNi 直接镍工艺 DT 数字孪生 EC 电化学 EcES 电化学储能系统 EC 电化学元件 EES 电储能系统 EHS 环境与健康安全 ES 储能 ESS 储能系统 ETIP 欧洲技术与创新计划 ETWG 能源转型工作组 EU 欧盟 EV 电动汽车 FCAS 频率控制辅助服务 FES 飞轮储能 GES 重力储能 GHG 温室气体 GW 吉瓦 GWh 吉瓦时 HDV 重型车辆 HTP 人体毒性潜力 ICE 内燃机 IEA 国际能源署 IP 知识产权 IRENA 国际可再生能源机构kT 千吨 kWh 千瓦时 LCO 钴酸锂 LCOS 平准化储能成本 LDV 轻型汽车 LFP 磷酸铁锂 Li 锂金属 Li 离子 锂离子 Li-O2 锂金属空气 Li-S 锂硫
本研究文章提出了一种创新的方法,可以通过将实时建模和优化与熔融盐储能(MSE)(MSE)和超临界蒸汽周期(S-SC)相结合,从而增强可持续的发电和电网支持。随着可再生能源使用的增长,间歇性资源可用性挑战电网稳定性和可靠的电源。为了解决这个问题,我们开发了一个系统,该系统将实时建模和优化合并,以精确控制MSE和S-SC组件。这种集成确保了不间断的能源产生,存储和分布,从而在高需求期间优化了可再生能源使用。数学模型和仿真评估了系统的动态行为,性能和经济可行性。严格的技术分析强调了成本效益和环境收益。发现揭示了出色的能源效率和网格支持,这使其成为可持续发电和网格稳定性的有前途的解决方案,并在可再生能源增长的情况下。实时建模和优化是现代能源系统中的关键组成部分。联合热量和功率(CHP)系统可实现56%的能源效率,而考虑到下设计的影响,而无需使用的63.61%。此外,在设计方案下,整体系统的发电效率从设计时的73.36%降至约63.55%。关于经济方面,CHP系统的级别存储成本(LCO)估计为114.4€ /兆瓦,具有外部设计条件,没有106.8欧元 /兆瓦。
作者:Zac Cesaro a、Matthew Ives b、Richard Nayak-Luke a、Mike Mason a、René Bañares-Alcántara a* a 牛津大学工程科学系,OX1 3PJ,牛津,英国 b 牛津大学地理与环境学院,OX1 3QY,牛津,英国* 通讯作者:rene.banares@eng.ox.ac.uk。摘要 绿色氨由空气、水和可再生能源合成,是一种无碳储能载体,具有众多潜在的能源应用,包括可供电力部门调度的绿色电力。由于氨的储存和运输成本低,绿色氨可作为所有地区的能源,而无需碳捕获和储存 (CCS) 或地下储氢的地质储存要求。我们在此提供了一种新颖的技术经济分析方法,根据近期和远期技术发展预测 2040 年氨的平准化电力成本 (LCOE),从而填补了氨作为电力行业能源载体应用方面的知识空白。我们发现,到 2040 年,许多地方的绿色氨价格可能低于 400 美元/吨,如果电解槽的成本降低达到乐观水平,或者当使用更有利的可再生资源供应全球绿色氨市场时,价格有可能降至 300 美元/吨以下。我们模拟了通过联合循环燃气轮机 (CCGT) 燃烧将氨转化为电能,这是实现低成本、可调度发电的有前途的途径。当发电厂容量系数低于 25% 时(这在可再生能源发电量较高的电力行业中可能越来越常见),临界点出现在 400 美元/吨左右的氨燃料价格,从而使绿色氨能够与其他主要形式的可调度、低碳或零碳技术竞争,例如天然气、生物能源或采用燃烧后 CCS 的燃煤发电厂。关键词:绿色氨、发电、LCOE、氨裂解、燃气轮机、Power-to-X
缩写 解释 AEL 碱性水电解器 AVGAS 航空汽油(航空级燃料) BE 电池电动 BEIS 商业、能源和工业战略部 BESS 电池储能系统 BEV 电池电动汽车 CCGT 联合循环燃气轮机 CCUS 碳捕获利用与储存 CCS 碳捕获与储存 COMAH 重大事故危害控制 CO 2 二氧化碳 CO 2e 二氧化碳当量 DNV 挪威船级社。开展此项研究的咨询公司 EFR 增强频率响应 ESG 环境、社会和治理 ETO DNV 的能源转型展望 EV 电动汽车 FC 燃料电池 FCEV 燃料电池电动汽车 GHG 温室气体 Gp km 千兆客公里 Gt km 千兆吨公里 H 2 氢气 HFO 重质燃料油 HICE 氢燃料内燃机 ICE 内燃机 IEA 国际能源署 LCO 钴酸锂 LFP 磷酸铁锂 LOHC 液态有机氢载体 LPG 液化石油气 Li-ion 锂离子电池 Li-S 锂硫电池 MGO 船用燃气油 MtCO2e 百万吨二氧化碳当量 NCA 锂镍钴氧化铝 NMC 锂镍锰钴氧化物 OCGT 开式循环燃气轮机 PEM 聚合物电解质膜电解器PHEV 插电式混合动力汽车 Pkm 铁路客运公里数(一名铁路旅客乘坐铁路行驶一公里的距离) PM 颗粒物 RPM 每分钟转数 RTE 往返效率 SAF 合成航空燃料 SIB 钠离子电池 SMR 蒸汽甲烷重整 SOEC 固体氧化物电解器 SOH 健康状态 SSB 固态电池 SUV 运动型多用途车 Tkm 吨公里数(一吨货物运输一公里的距离) TRL 技术就绪水平 VTOL(eVTOL) 垂直起降(电动垂直起降) VRES 可变可再生能源
LIB利用率上升增加了对关键原材料的需求,例如锂(Li),Nickel(Ni)和Cobalt(CO)。但是,这些基本材料中的大多数受特定国家的监管。在刚果民主共和国开采了一半以上的钴矿石,并在中国进行了改进,约有80%的锂由澳大利亚和智利控制。[2]原材料和生产领域的不均匀分布引起了人们对全球供应链的关注。结果,锂和钴价格正在上涨和波动,与此同时,地理垄断可能导致地方政府垄断原材料的供应。[3]因此,从可持续性的角度来看,必须建立从消费液(电动汽车,固定储物电池和家用电器)中回收的关键伴侣的次要供应到期这种潜在短缺的严重性。另一方面,由于LIB通常可以平均使用10年,因此[3,4]到2030年,用过的Libs的数量预计将超过500万吨。[5] LIB的主要组成部分是阴极材料(Lini X Co Y Mn Z O 2(0 ), anode materials (graphite), current collectors (alu- minum (Al) and copper (Cu)), electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ), organic solvents (ethylene car- bonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc.).), anode materials (graphite), current collectors (alu- minum (Al) and copper (Cu)), electrolyte salts such as lithium hexafluorophosphate (LiPF 6 ), organic solvents (ethylene car- bonate (EC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), etc.).所有这些不同的成分都包含有害物质,并导致金属,灰尘,有机和氟污染。[6]垃圾填埋或焚化会损害生态系统。例如,一旦电极材料进入环境,来自阴极的金属离子,来自阳极的碳灰尘,强碱和来自电解质的重金属离子可能会引起严重的环境污染,危险等,包括提高土壤的pH值[7],[7]并产生毒性气体(HF,HF,HCL等)。此外,电池中的金属和电解质会损害人类健康。例如,钴可能通过地下水和其他通道进入人体,从而导致