从构象上看,刺突糖蛋白以同源三聚体的形式排列在病毒表面 [29]。当 RBM 被隐藏时,构象称为向下(受体不可接近)(见图 1C)。然而,同源三聚体是不对称的,因为它们不断进行结构重排(向上构象),以将病毒膜与宿主细胞膜融合 [13]。当两个 RBD 结构域被隐藏(受体不可接近)时,一个 RBD 结构域暴露(受体可接近),称为向上构象(见图 1D)。这是因为 S1 的 RBD 经历了铰链状运动 [32]。在 SARS-CoV 中,有两个铰链位点被鉴定(铰链 1 位点(354-361)和铰链 2 位点(552-563),它们负责上下切换
。CC-BY-NC-ND 4.0 国际许可,根据 (未经同行评审认证)提供,是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2021 年 8 月 17 日发布。;https://doi.org/10.1101/2021.08.17.456714 doi:bioRxiv 预印本
针对程序性死亡 (PD-1) 受体/配体 (L)“检查点”的免疫疗法在许多癌症类型的治疗中迅速取得进展。为了扩大治疗范围和疗效,需要预测性生物标记和合理选择联合治疗。为了满足这些需求,我们必须详细了解 PD-1 的功能。我们在此概述了最近对 PD-1 调节 CD8 + T 细胞反应的见解。普遍的观点是,阻断 PD-1/配体 (L) 相互作用会“重新激活”在肿瘤微环境 (TME) 中功能失调的细胞毒性 T 淋巴细胞 (CTL)。然而,本综述强调肿瘤与邻近的引流淋巴结 (LN) 持续沟通,并且 PD-1 检查点也在 T 细胞启动期间起作用。我们阐明了 PD-(L)1 系统在 T 细胞/DC 界面的作用,它调节 T 细胞受体 (TCR) 信号传导和 CD28 共刺激,从而控制肿瘤特异性 T 细胞的激活。我们还强调了 CD4 + T 细胞在启动过程中帮助的重要性,这使得 DC 能够提供最佳 CTL 分化所需的其他共刺激和细胞因子信号,并可能避免功能障碍状态。因此,我们认为 PD-(L)1 阻断应利用 LN 功能并与“帮助”信号相结合以优化 CTL 功效。
简单总结:肿瘤缺氧被认为是与常规放射疗法耐药性相关的一个关键因素,其中X射线诱导的自由基导致DNA损伤的方式在很大程度上依赖于组织氧合。新兴的PSMA定向放射性配体疗法(RLT)利用放射性药物发射的α或β粒子杀死肿瘤细胞。与传统疗法相比,诱导的DNA损伤较少依赖于氧合状态。人们较少关注肿瘤缺氧是否会影响PSMA定向RLT的疗效。我们提出了一个组织学驱动的计算机模型来定量研究肿瘤缺氧对PSMA定向RLT(177 Lu和225 Ac)治疗结果的影响。我们的研究结果表明,缺氧是应用PSMA定向RLT需要考虑的一个因素。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 5 月 18 日发布。;https://doi.org/10.1101/2021.05.18.444655 doi:bioRxiv preprint
例如,在药物候选物的代谢氧化位点用氟原子取代氢原子可能会阻止这种代谢的发生。由于氟原子的大小与氢原子相似,因此分子的整体拓扑结构不会受到明显影响,从而不会影响所需的生物活性。
受最近批准用于癌症治疗的共价激酶抑制剂 (TKI) 的启发,共价探针和药物的开发经历了一场复兴,现在吸引了工业界和学术界的浓厚兴趣,包括针对 EGFR 的抑制剂:阿法替尼 (Gilotrif) 和奥希替尼 (Tagrisso) 或 BTK:阿卡替尼 (Calquence) 和伊布替尼 (Imbruvica)。1–4 与暂时靶向保守底物和/或变构结合位点的非共价小分子不同,共价抑制剂通常在效力、选择性、药代动力学和药效学方面表现出差异化的药理学,因为它们能够与靶蛋白形成不可逆的共价键。 5,6 尽管有这些优点,许多人仍然对共价抑制剂持怀疑态度,因为它们会产生能够引发特异性免疫反应和过敏/超敏反应的蛋白质加合物。7,8 从历史上看,共价药物的发现
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2020 年 7 月 28 日发布。;https://doi.org/10.1101/2020.04.04.20053504 doi:medRxiv preprint
有机发光二极管 (OLED) 在过去二十年里彻底改变了显示器行业 1 。尽管被广泛应用,但这些设备仍有很大改进空间,例如,现有技术的能源效率。市场迫切需要更深的红色和更高的色纯度,而传统发射器很难满足这一需求 2、3 。需要一类具有更长波长的新型红色掺杂剂,但简单的能隙定律考虑可以解释,由于非辐射衰减增加导致的效率降低是不可避免的 4、5 。因此,发光效率是商用红色掺杂剂最关键的材料特性。由于发射特性的微小变化往往会加剧效率下降,可能的解决方案是考虑主体-掺杂剂组合以更好地取向过渡偶极矩 6、7 ,或用功能团装饰发射极而不会过度改变发色团支架 8 ,但迄今为止尚未取得决定性的进展。一种潜在的解决方案是采用带有三个双齿配体的杂配体 Ir 配合物,其中两个主要负责发光,一个是支持辅助配体,不直接参与磷光。目标是通过改变辅助配体来消除非生产性衰变途径,从而对发光特性产生最小的影响 9 。在各种红色掺杂剂中,携带双齿苯基吡啶 (ppy) 型配体的 Ir(III) 配合物成为一类重要的发射体 10 ,典型的辅助配体是乙酰丙酮 (acac) 衍生物 2 。尽管使用辅助配体来控制掺杂剂化学行为的前景很诱人,但成功实施涉及辅助配体的合理设计策略却极为罕见 11 。在此采用详细的计算模型,我们发现除了延长 Ir – N 键之外,涉及配位层角度的结构变化也会导致辐射态的不良失活。利用这些精确的计算机模型的见解,我们推导出并通过实验证实了一种通用的设计策略。虽然 DFT 模型不一定准确,但它们提供了易于解释和概念化的精确信息。
乳腺癌是全球女性最常见的恶性肿瘤类型,而三阴性乳腺癌(TNBC)的发病率约占乳腺癌总数的15%~20%。1以阿霉素(DOX)为代表的蒽环类药物是TNBC化疗不可缺少的核心药物,可用于早期TNBC的治疗。2但DOX的耐药问题不容忽视,严重限制了其临床应用,因此积极寻找一种高效、低毒、靶向广的肿瘤耐药逆转剂成为该研究领域的重点靶点。黄芪是一种历史悠久、药用价值很高的中草药,常被用作免疫调节剂,以改善抗肿瘤药物的副作用。黄芪苷IV(AS-IV)是黄芪中具有生物活性的皂苷,具有很强的抗氧化活性。3