药物发现中的 AI/ML 方法日趋成熟,其效用和影响可能会渗透到药物发现的许多方面,包括先导化合物发现和先导化合物优化。典型方法利用 ML 模型进行结构-属性预测,并使用简单的基于二维的小分子化学表示。此外,有限的数据(尤其是与新靶点有关的数据)使得难以构建有效的结构-活性 ML 模型。在这里,我们描述了我们最近使用 BIOVIA 生成治疗设计 (GTD) 应用程序的工作,该应用程序可以利用配体蛋白相互作用的 3D 结构模型,即所需特征的药效团表示。使用与 SYK 抑制剂 entospletinib 和 lanraplenib 以及两种不相关的临床 SYK 抑制剂的发现有关的 SAR 数据集,我们展示了如何使用 GTD 有效解决先导化合物发现和先导化合物优化中的几个常见问题。这包括努力利用化学空间约束和在 GTD 中应用进化压力,基于项目中期阶段的数据回顾性地重新识别候选药物分子。此外,关于如何配置 GTD 平台以生成包含来自多个不相关分子系列的特征的分子的研究展示了 GTD 方法如何将 AI/ML 应用于药物发现。
图2:MD模拟。(a)不同LI +协调环境的示意图。(b-d)显示了liotf和(e-g)的结果:(b,e)配位矩阵,该矩阵对来自OTF-的氧和氧气对Li +的总协调的相对贡献,来自OTF-和来自聚合物终端组的硝化物。通过红色和黄线传递的网格代表了最有利的4和5的总坐标数。Pij是模拟时间内每个协调组合的概率。(c,f)阳离子,阴离子和聚合物链的MSD图。(d,g)离子聚类统计,其中网格通过红线代表中性簇。αIJ是模拟期间每个群集的平均计数。
摘要:描述的是用于活细胞的配体指导的催化剂,生物正交化学的光催化激活。催化基是通过束缚的配体定位于DNA或微管蛋白的,红光(660 nm)光催化用于引发一系列DHTZ氧化,分子内二二二二二二二二二二二二氧化物,以及消除释放现场化合物的消除。Silarhodamine(SiR)染料,更常用地用作生物荧光团,用作具有高细胞相容性并产生最小单线氧的光催化剂。Hoechst染料(siR-H)和紫杉醇(siR-T)的商业上可用的共轭物分别用于将SIR定位于细胞核和微管蛋白。计算用于帮助设计新的氧化还原激活的光电,以释放苯酚或N-CA4,一种微管二动剂。在模型研究中,仅使用2 µm的SIR和40 µM光地摄影,在5分钟内完成了分离。原位光谱研究支持一种涉及快速分子内多尔斯 - 阿尔德反应的机制和确定消除步骤的速率。在细胞研究中,这种分离过程在光(25 nm)和siR-H染料(500 nm)的低浓度下成功。分解N-CA4会导致微管解聚和伴随细胞区域的降低。对照研究表明,H-H爵士在细胞内而不是在细胞外环境中催化脉冲。使用Sir-T,相同的染料作为光催化剂和荧光报告剂进行微管蛋白去聚合,并且在共聚焦显微镜下,由于活细胞中光催化脉冲,可以实时可视化微管蛋白去聚合。
癌症生物学领域的最新进展揭示了与致癌作用和化疗暴露相关的分子变化。现有信息正被充分利用来开发针对与癌细胞生长、存活和化学耐药性有关的特定分子的疗法。靶向疗法已显著提高许多癌症的总生存期 (OS)。因此,开发针对口腔鳞状细胞癌 (OSCC) 的此类靶向疗法预计将具有重大的临床意义。在当前的工作中,我们利用基因表达、Cox 比例风险回归和机器学习在 OSCC 中确定了与药物特异性敏感性相关的预后生物标志物 (BOP1、CCNA2、CKS2、PLAU 和 SERPINE1)。这些标志物的失调与许多癌症的总生存期显著相关。它们的表达升高与各种癌症中的细胞增殖和侵袭性恶性肿瘤有关。从机制上讲,抑制这些生物标志物应能显著减少 OSCC 中的细胞增殖和转移,并应能带来更好的 OS。值得注意的是,迄今为止尚未发现针对这些生物标志物的有效小分子候选药物。因此,我们采用了一种综合的计算机药物设计策略,结合同源性建模、广泛的分子动力学 (MD) 模拟和集合分子对接,来识别针对已识别靶标的潜在化合物,并已识别出潜在分子。我们希望这项研究将有助于揭示在化学耐药性中发挥作用并对 OS 产生重大影响的潜在基因。它还将导致识别针对 OSCC 的新靶向疗法。
简介 癌症的发展和转移很大程度上取决于癌细胞与环境的相互作用,包括巨噬细胞,巨噬细胞大量渗入肿瘤,通常预后不良 (1, 2)。巨噬细胞是一种特殊细胞,它不断巡逻和监控身体,以解决感染和清除垂死细胞。当检测到异常时,例如在伤口愈合期间,巨噬细胞会消灭入侵的微生物,协调免疫系统,促进和解决炎症,并支持细胞增殖和组织重塑 (3)。微环境中的因素驱使巨噬细胞向特殊细胞状态发展,其中两种极端状态被描述为促炎、经典激活的 M1 状态和抗炎、替代激活的 M2 状态 (4)。然而,多项研究表明,巨噬细胞存在于一系列细胞状态和功能中,它们在不同的激活状态之间振荡 (5)。同样在肿瘤中,巨噬细胞的表型也多种多样,它们支持或抑制肿瘤进展。肿瘤相关巨噬细胞 (TAM) 最初试图恢复肿瘤的正常结构,类似于经典的 M1 激活巨噬细胞 (6)。然而,肿瘤细胞分泌和蛋白水解释放某些细胞因子和生长因子,如集落刺激因子-1 (CSF-1) (7) 和白细胞介素-4 (IL-4) (8),会将 TAM 诱导为促肿瘤表型,具有许多与替代激活的 M2 巨噬细胞相同的特征。因此,TAM 可以支持肿瘤生长、转移和免疫逃避,并保护肿瘤细胞免受化疗 (9–11)。TAM 表型是促肿瘤还是抗肿瘤,取决于肿瘤的起源以及肿瘤微环境 (TME) 内的确切信号传导。
免责声明:本社论反映作者的观点,不应被视为代表 FDA 的观点或政策。
嘌呤受体 P2X 配体门控离子通道 7 型 (P2X7R) 是一种三磷酸腺苷 (ATP) 门控离子通道。1-3 P2X7R 广泛存在于身体几乎所有组织和器官中,并在免疫、外周和中枢神经系统中高度表达,因此该受体在健康和疾病中发挥着重要作用。4-6 P2X7R 的过度表达与许多下游事件有关,以细胞特异性的方式进行,包括炎症、ATP 介导的细胞增殖和死亡、代谢事件和吞噬作用,并与多种炎症、免疫、癌症、神经、肌肉骨骼和心血管疾病有关。7-12 P2X7R 是一个有吸引力的治疗靶点,许多 P2X7R 拮抗剂已被开发用于治疗与 P2X7R 相关的疾病,如炎症、感染、神经、癌症和心脏疾病。 13-17 因此,P2X7R 已成为一个有趣的分子成像靶点,因为成像剂的开发与药物开发过程同步进行。18 先进的生物医学成像技术正电子发射断层扫描 (PET) 和单光子发射计算机断层扫描 (SPECT) 是两种有前途的分子成像方式,
Ashwin Dhakal 是密苏里大学哥伦比亚分校的计算机科学研究生。他的研究重点是分析和设计用于预测蛋白质-配体相互作用的机器学习模型。Cole McKay 是密苏里大学哥伦比亚分校的生物化学研究生。他的研究重点是未表征蛋白质结构域的结构和生物学功能。John J. Tanner 是密苏里大学哥伦比亚分校生物化学和化学系的教授。他的研究兴趣包括结构生物学、X 射线晶体学和酶。Jianlin Cheng 是密苏里大学哥伦比亚分校电气工程和计算机科学系的教授。他的研究重点是生物信息学和机器学习。收到日期:2021 年 8 月 5 日。修订日期:2021 年 9 月 28 日。接受日期:2021 年 10 月 15 日 © 作者 2021。由牛津大学出版社出版。这是一篇根据知识共享署名许可条款分发的开放获取文章(http://creativecommons.org/licenses/by/4.0/),允许在任何媒体中不受限制地重复使用、分发和复制,前提是正确引用原始作品。
本工作论文由卫生政策伙伴关系和 Avalere Health 与美国专家顾问小组合作编写。该小组对所有国家级成果拥有完全的编辑控制权。该项目由诺华旗下公司 Advanced Accelerator Applications 提供无限制资助,并得到 Nordic Nanovector 的额外支持。
可能从放射性配体疗法中受益的人群对放射性配体疗法的认识和理解参差不齐。癌症患者及其亲人可以在倡导公平获得新疗法(如放射性配体疗法)方面发挥重要作用。在美国,关于前列腺癌放射性配体疗法的信息有限,30 现有的关于淋巴瘤的信息不包括正在进行的临床试验。31-33 因此,患有这些癌症的人可能不知道这种疗法,也不知道目前正在对其进行研究。许多患有 NET 的人都知道放射性配体疗法,34 因为这种治疗方法已经很成熟,并且经常在研究、宣传和国家癌症组织的网站上讨论。然而,关于这种疗法的信息并不一致,患者宣传和国家临床组织来源的资格标准各不相同。35-37 需要一致和准确的信息来确保癌症患者了解并能够讨论他们的治疗选择,并为自己争取权益。