具有高光谱纯度的激光器可以实现多种应用空间,包括精密光谱、相干高速通信、物理传感和量子系统操控。目前,精心设计和构建的台式法布里-珀罗腔已经在主动激光线宽减小方面取得了显著成就,主要用于光学原子钟。然而,对在周围环境中高性能运行的小型化激光系统的需求日益增加。这里介绍了一种紧凑而坚固的光子原子激光器,它由一个 2.5 厘米长、20 000 精细度、单片法布里-珀罗腔和一个微机械铷蒸汽室集成而成。通过利用腔的短时频率稳定性和原子的长期频率稳定性,实现了能够集成以进行扩展测量的超窄线宽激光器。具体来说,该激光器支持 20 毫秒平均时间内 1 × 10 − 13 的分数频率稳定性,7 × 10 − 13
美国商务部,芭芭拉·哈克曼·富兰克林,部长 技术管理局,罗伯特·M·怀特,技术部副部长 美国国家标准与技术研究所,约翰·W·莱昂斯,主任
低至 366 nm 汞线),可以对低至约 0.3 Ilm 的线宽进行光学测量(对于 366 nm 的 f/1 光学元件,艾里斑直径为 0.45 Ilm)。但是,要达到如此窄的线宽,必须对图像中的衍射效应进行建模,并制定一个有意义的标准,确定图像轮廓上的哪个点对应于线的边缘。随着特征高度变得大于大约四分之一波长,并且纵横比(特征高度/宽度)接近并大于 1,这种建模变得越来越困难。这种困难部分是数学上的(例如,不能使用标量理论将特征视为平面,并且对于小线宽和大纵横比,相邻边缘的衍射效应会相互作用)。困难的部分原因还在于,随着特征高度的增加和边缘几何形状与理想垂直形状的偏离,衍射效应变得更加明显,并从边缘进一步传播。事实上,对于大纵横比和非垂直壁,“线宽”的定义本身就有多种解释。
由于本报告篇幅有限,因此假设读者对将激光器稳定到参考腔体领域有一定的了解。对于不熟悉该领域的人来说,Hamilton 的评论文章 [1] 是一个很好的起点。虽然提高激光器的被动稳定性很有用,但只能将激光线宽减小到一定程度。为了取得进一步进展,需要进行主动稳定。主动稳定的先决条件是鉴频器。可以使用分子吸收或参考腔体。参考腔体有两个优点,首先,谐振梳允许访问光谱中的任何位置。此外,控制信号的信噪比可以几乎无限制地增加,而不会因功率而使谐振变宽。在实现这种类型的激光稳定之前,激光源必须以单一的空间和时间模式运行。还假设有足够带宽的致动器来涵盖激光器的固有噪声。这些致动器既可以作用于激光腔本身(压电安装镜、腔内布鲁斯特板),也可以作用于腔外的光(声光调制器 -AOM、电光调制器 -EOM)。20 世纪 80 年代,出现了许多技术发展,使得构建 1 赫兹激光器成为可能。使用参考腔的主要问题之一是热长度变化。
外部腔内波长激光,其特征在于其特殊的时间连贯性和广泛的调谐范围,它是尖端的纤维感应,例如纤维传感,刺激和光谱镜的至关重要的光源。光学通信技术的新兴增长升级了对线宽和广泛调整范围狭窄的激光器的需求,从而促进了外部波长 - 腔内扫描二极管激光及其多样化应用的迅速发展。本文全面地介绍了这些激光器的配置和操作原理,并对其发展状态进行了深入的审查,专门针对那些具有狭窄线宽和较宽调整范围的人。目的是为参与波长激光的开发和应用的研究人员提供宝贵的参考。
由于振动和旋转跃迁,一氧化碳和甲烷等许多分子在中红外范围内都有强的吸收线。1 自 1994 年发明以来,中红外量子级联激光器 (QCL) 已成为分子气体传感的流行选择。2 分子光谱的精度和分辨率高度依赖于 QCL 的光谱线宽。3 由于接近于零的线宽展宽因子 (LBF),4 QCL 本身的固有线宽只有几百赫兹,接近肖洛-汤斯极限。5 然而,电流源噪声、温度波动和机械振动引起的闪烁噪声(1/f 噪声)会显著加宽自由运行 QCL 的实际线宽至兆赫兹范围。6 为了将 QCL 的光谱线宽缩小到千赫兹或赫兹范围,已经开发出各种各样的频率稳定技术。一种主要方法是将 QCL 频率锁定在分子吸收线的一侧,但代价是波长可调性的损失。7、8 另一种方法是通过庞德-德雷弗-霍尔方法将 QCL 锁定在高精度光学腔体上,这种方法容易受到外部声学和机械振动的影响。9 – 11 一种更常见的方法是将 QCL 相位锁定在近红外光学腔体上。
引言光与原子旋转的耦合是使用光子(1-4)的量子信息处理中的主要工具,并以精确的光学光谱法,实现了原子结构(5、6),时间和频率标准(7)和实验室搜索的确定(8)。这些应用的性能取决于旋转的相干时间以及彼此相处的效率。在致密的原子气体中,光可以有效地与集合的集体原子自旋搭配(9)。然而,在室温及以上,由于原子与环境的相互作用以及动作倾向,这种集体旋转易于发动,这通常将相干时间限制在10至100 ms(10-14)。碱蒸气可以达到1分钟(15 - 18)的连贯时间,并且成功地用于量子磁孔应用中(9),但高质量的涂料在升高的温度下降解并因此限制了碱密度。贵重气体的奇数同位素(例如3他)的核中旋转非零。核自旋受到完整的电子壳的保护,因此表现出非常长的连贯时间,可能是很多小时。这对应于用于精确传感(19,20),医学成像(21)和寻找新物理学(22 - 25)的狭窄核能共振(NMR)(NMR)。由于贵重气体对从红外线到紫外线的光透明,因此对其核自旋的制备和监测通常依赖于与另一种旋转气体的碰撞(26,27)。我们观察到一个实质性的Noble-Gas NMR传感器使用与碱原子的自旋交换碰撞。因为碱旋转确实会亮起来,因此可以按照这种方式进行NMR信号的拾取,并以这种方式进行狭窄的光谱和长期旋转的旋转优先信号(28 - 31)。然而,各种量子光学应用都需要在光和贵族旋转之间有效的双向耦合(32 - 36)。从未实现过与长寿命核自旋的共振光学激发相对应的这种耦合。在这里,我们意识到由碱旋转介导的光和贵族旋转之间的连贯的双向耦合。
本综述介绍了采用铁磁共振电动力学理论测量铁磁线宽、磁导率张量和饱和磁化强度的最新进展。结果表明,与常用的微扰和静磁理论相比,电动力学理论可以显著提高这些参数的测量精度。与微扰法相反,电动力学理论并不局限于小样本。它允许在适当选择的金属外壳中确定任意尺寸的球形和圆柱形旋磁样品的共振频率和 Q 因子。用电动力学理论对非常小的样本得到的结果与用微扰和静磁理论得到的结果相同。给出了微波频率下铁磁线宽、磁导率张量和饱和磁化强度的测量结果。
高荧光(HF)是一种利用激子在两个发光体之间转移的相对较新的现象,需要对分子能级进行仔细的成对调整,并被认为是朝着开发新的高效OLED系统发展的关键步骤。迄今为止,据报道,几乎只有几个具有所需窄带发射但中等外部量子效率的HF黄色发射器(EQE <20%)。这是因为尚未提出一种系统的系统策略,该策略尚未提出,尚未提出作为有效激子转移的补充机制,尚未提出过Förster共振能量传递(FRET)和三重态(TTS)过渡。在此,我们提出了一种理性方法,该方法允许通过微妙的结构修改,这是由同一供体和受体亚基构建的一对化合物,但可以在这些歧义性碎片之间进行多种通信。TADF活性掺杂剂基于与甲壳唑部分相关的萘酰亚胺支架,通过引入额外的键不仅导致π-云的扩大,而且还导致刚性刚化,还会导致刚性和抑制供体的旋转。这种结构变化阻止了TADF,并允许引导带盖和激发状态能量同时追求FRET和TTS过程。使用呈现的发射器的新型OLED设备显示出极好的外部量子效率(高达27%)和最大狭窄的全宽度(40nm),这是能量水平很好的结果。提出的设计原理证明,仅需要进行较小的结构修饰才能获得HF OLED设备的商业染料。
摘要。在LBO晶体中具有两个阶段,在193 nm处有60兆瓦的固态深紫外线(DUV)激光器,狭窄的线宽。泵激光器分别来自258 nm和1553 nm,源自自制的YB-Hybrid激光器,分别采用了第四次谐波产生和ER掺杂的纤维激光器。YB-HYBRID激光器最终是功率缩放的2 mm×2 mm×30 mm YB:YAG散装晶体。伴随着221 nm的220兆瓦DUV激光器,193 nm激光器的平均功率为60 mW,脉冲持续时间为4.6 ns,重复速率为6 kHz,线宽约为640 MHz。据我们所知,这是有史以来报告的LBO晶体产生的193 nm激光和221 nm激光的最高功率,也是193 nm激光的最狭窄线宽。 值得注意的是,转化效率为221至193 nm的转化效率为27%,为258至193 nm的转化效率,这是迄今报告的最高效率值。 我们展示了LBO晶体生产数百毫克甚至瓦特级193 nm激光器的巨大潜力,这也铺平了一种新的方式来产生其他DUV激光波长。据我们所知,这是有史以来报告的LBO晶体产生的193 nm激光和221 nm激光的最高功率,也是193 nm激光的最狭窄线宽。值得注意的是,转化效率为221至193 nm的转化效率为27%,为258至193 nm的转化效率,这是迄今报告的最高效率值。我们展示了LBO晶体生产数百毫克甚至瓦特级193 nm激光器的巨大潜力,这也铺平了一种新的方式来产生其他DUV激光波长。