1.1 Scope................................................................................................................................... 3 1.2 Description of BOS-G...........................................................................................................3 1.3 Meaning of symbols............................................................................................................ 4 1.4 General safety信息................................................................................................................................................................................................................................................................................................................. Certificate................................................................................................................8 1.8 Requirements for Installation Personnel........................................................................... .8 2.Safety.............................................................................................................................................. 9
持续增长的可持续能源需求和严重的环境危机推动了世界各地各种先进能源技术的发展,目的是高效利用和储存可再生能源[1,2]。高能量密度和经济的充电电池是这些先进能源技术的关键组成部分[3–5]。锂离子电池基于锂离子 (Li-ion) 插层化学原理,在商用便携式电子设备和电动汽车领域取得了巨大成功[6]。然而,电极材料容量有限、成本高,阻碍了传统锂离子电池在大型新兴领域的渗透。因此,开发具有更高能量密度和更低成本的电化学储能装置变得越来越重要[7–9]。锂硫 (Li-S) 电池因其高能量密度和低成本而被认为是继锂离子电池之后最有前途的储能系统之一[10]。通常,Li-S 电池由元素硫(S 8 )正极和锂负极组成,如图 1 a 所示。基于 S 8 和锂金属之间的多电子转换机制(S 8 + 16Li ↔ 8Li 2 S)[11,12],Li-S 电池的理论比容量高达 1675 mAh g-1,比能量高达 2,600 Wh kg-1,是锂离子电池的 2-5 倍[13]。Li-S 电池广为接受的反应机理如图 1 c 所示。在放电过程中,固体 S8 首先在约 2.35 V 的第一个放电平台期还原为可溶性多硫化锂(LiPS,通常表示为 Li2Sn,2<n≤8),然后在约 2.1 V 的第二个放电平台期继续还原为固体硫化锂(Li2S)。由于
•分类为UN3551钠离子电池下的9类危险材料,设备中包含的3552钠离子电池。UN 3552含有设备的钠离子电池•必须遵守IATA DGR(危险货物法规),包括特殊包装,标签和文档。•限制适用于充电状态,数量限制和包装完整性。•严格处理损坏,有缺陷或召回电池的准则。
由于全球对现代技术的便携式电源需求的增长,含LI的电池(LB)作为常规能源的新型替代方案正在迅速增加。将LB的大规模整合到每日电子设备中,从手机[1]到电动汽车,[2]可以大大减少温室气体的排放,减少有毒重金属的使用,并进一步使绿色技术能够保留环境。 尤其是引入便携式锂离子电池已经彻底改变了绿色能源的储存(例如,从太阳能或风能转换)并减少了整体能源消耗。 [3,4]然而,一方面,提高了锂离子电池的能源存储能力,能源密度和效率,并解决了环境可持续性和制造成本的问题,另一方面,必须确定新的新替代材料和设计。 在过去的二十年中,源自分层结构(例如石墨)的纳米材料的出现导致它们大量融合到能源行业的各个部门,尤其是LB生产。 [5 - 8]不同的基于碳的纳米形态,例如碳纳米管(CNT),石墨烯和石墨烯量子点(GQDS),已广泛用于改善锂离子电池的性能。 石墨烯的出色电特性(10 000 cm 2 V 1 S 1)[9-11] [9-11]在改善电极电导率[12]以及电解质的离子电导率方面引起了极大的兴趣。将LB的大规模整合到每日电子设备中,从手机[1]到电动汽车,[2]可以大大减少温室气体的排放,减少有毒重金属的使用,并进一步使绿色技术能够保留环境。尤其是引入便携式锂离子电池已经彻底改变了绿色能源的储存(例如,从太阳能或风能转换)并减少了整体能源消耗。[3,4]然而,一方面,提高了锂离子电池的能源存储能力,能源密度和效率,并解决了环境可持续性和制造成本的问题,另一方面,必须确定新的新替代材料和设计。在过去的二十年中,源自分层结构(例如石墨)的纳米材料的出现导致它们大量融合到能源行业的各个部门,尤其是LB生产。[5 - 8]不同的基于碳的纳米形态,例如碳纳米管(CNT),石墨烯和石墨烯量子点(GQDS),已广泛用于改善锂离子电池的性能。石墨烯的出色电特性(10 000 cm 2 V 1 S 1)[9-11] [9-11]在改善电极电导率[12]以及电解质的离子电导率方面引起了极大的兴趣。[13]受这些基于碳的纳米材料,其他分层材料的纳米结构的启发,例如过渡金属二核苷(TMDS),[14]磷,[15]过渡金属碳(TMCS:TMC:e,例如,MXENES),[16],[16],[16]和NITRIDE(BORON NITRIDE(BN)[17] [17] [17] [17] [17]尤其是,由于与上述材料家族相比,由于其出色的热化学稳定性,高质子和离子汇率,高质子和离子汇率,高质子和离子汇率的可调性以及电子性能的可调性,BN在能源储能研究中的适用性已经快速增长。[18,19]在下一部分中,讨论了LB中BN纳米材料的重要性,并具有强调BN作为LB技术的未来候选部分的属性。同时,作者旨在检查H-BN的局限
*1。上面显示的名义容量基于标准排水和截止电压在20℃2时降至2.0V。上面显示的名义容量基于标准排水和截止电压,在20℃3时降至4.0V。预计在工作温度-40至-20℃或60至70℃时使用时,请咨询松下。
10.6。危险分解产物 - 氢(H 2)以及氧化锂(Li 2 O)和氢氧化锂(LiOH)粉尘是在锂金属与水反应的情况下产生的。氯(Cl 2),二氧化硫(SO 2)和二硫化二氯化物(S 2 Cl 2)在140 thionyl氯的热分解中,在140 r-盐酸(HCl)和二氧化硫二氧化硫(SO 2)的情况下,在硫代酸(So 2)的情况下产生硫代酸(So 2)的含量(硫酸)酸(SO 2),含有硫代酸(SO 2)。如果在四氯化铝(Lialcl 4)与水反应的情况下,产生烟雾,氧化锂(Li 2 O),氢氧化锂(LiOH)和氢氧化铝(Al(OH)3)。
EnBW 拥有超过 28,000 名员工,是德国和欧洲最大的能源供应公司之一。它为大约 550 万客户提供电力、天然气和水以及基础设施和能源相关产品和服务。在公司从传统能源供应商向可持续基础设施集团转型的过程中,可再生能源以及电力和天然气配送和运输网络的扩张是 EnBW 增长战略的基石,也是其投资支出的重点。到 2030 年,EnBW 计划总投资额达到 400 亿欧元,其中约 90% 将用于德国。EnBW 的目标是到 2025 年底可再生能源占其发电组合的一半以上,到 2028 年底逐步淘汰煤炭。这些都是公司在 2035 年实现碳中和的关键里程碑。www.enbw.com