第五代(5G)通信时代呼唤技术革命,为我们的生活带来新变化。在材料工程领域,人们正在付出巨大努力来开发高性能的新型功能材料[1-3]。例如,开发低介电常数的电子材料对于防止5G频率的干扰至关重要[4,5]。然而,在很多情况下,降低介电常数会导致材料物理性能的下降[6]。液晶聚合物(LCP)由于其独特的分子结构而具有相对较低的粘度,并且可以借助传统的制造方法进行熔融加工[7-9]。此外,它还表现出优异的物理性能,例如高机械强度、低成型收缩率、从低温到高温的高冲击强度以及优异的耐热性[10-12]。由于这些特性,它主要用于微连接器和集成电路(IC)器件等电子零件[13-15]。然而,由于其具有高度的各向异性,因此很可能会发生较大的变形和翘曲。因此,LCP 复合材料需要采用一些增强材料,如玻璃纤维和滑石粉 [16, 17]。玻璃微胶囊是含有大量空气的空心玻璃微球 [18]。当它们嵌入到各种聚合物中时,可以减轻零件的重量 [19]。此外,它们还具有优异的绝缘性能和电阻 [20, 21]。因此,它们可以取代典型的工程填料 [22],如二氧化硅、碳酸钙和粘土。众所周知,空气的介电常数极低。这表明玻璃微胶囊内的空气有助于降低介电常数并提高物理性能 [23, 24]。海泡石是一种与玻璃纤维类似的水合硅酸镁晶须 [25, 26]。玻璃纤维的直径通常小于 10 微米 [27],而海泡石的直径为几纳米 [28]。在这方面,少量的海泡石可以产生非常积极的效果,以增强物理性能 [29]。在本研究中,我们利用挤出法制造了嵌入 LCP 复合材料中的海泡石和玻璃微胶囊
摘要:具有各向异性热传导特性的材料,由分子尺度结构确定,提供了一种控制纳米级空间中热流的方法。因此,在这里,我们考虑逐层(LBL)膜,它们是多层聚电解质多层的静电组装,预计将在跨平面和平面内方向之间具有不同的热传导特性。我们构建了由带电的固体壁夹住的聚丙烯酸)/聚乙基亚胺(PAA/PEI)LBL膜的模型,并使用分子动力学模拟研究了其各向异性热传导。在跨平面方向上,固体壁和LBL膜之间的热边界电阻以及组成型PAA和PEI层之间的热边界电阻随着电离程度的增加(固体表面电荷密度和每个PAA/PEI分子的电荷数)减小。当电离程度较低时,组成层的跨平面导热率高于块状状态。随着电离程度的增加,线性聚合物PAA的跨平面导热率会降低,因为面式内部的聚合物链的数量增加。在平面内方向上,我们研究了每层的热传导,并发现由于面内链对准,再次发现有效的内部直导导热率。■简介高级热管理是工业领域中常见且不可避免的挑战。1与成分聚合物的散装状态相比,LBL膜中的热传导是三维增强的,因为跨平面方向的静电相互作用和平面方向上的分子比对。热界面材料(TIM)通常插入两个组件(例如热源和水槽)之间,从而有效的热传递从一种到另一个,即减少热电阻。随着高性能设备(例如功率模块)的热产生密度的增加,需要进一步改善TIM。通常,各种类型的热油脂,弹性体,凝胶或相变材料用于TIMS,由聚合物组成,由聚合物组成,具有高热传导性,例如金属,陶瓷和碳材料等偶尔会添加。
