Egert D、Pettibone JR、Lemke S、Patel PR、Caldwell CM、Cai D、Ganguly K、Chestek CA、Berke JD。用于高密度、精确定位神经生理学的细胞级硅探针。J Neurophysiol 124:1578–1587,2020 年。首次发表于 2020 年 9 月 23 日;doi:10。1152/jn.00352.2020。—带有大量电极的神经植入物已成为检查大脑功能的重要工具。然而,与它们记录的神经元相比,这些设备通常会取代很大的颅内容积。这种大尺寸限制了植入物的密度,引发组织反应,从而降低慢性性能,并妨碍了准确可视化完整电路内记录位置的能力。我们在此报告了下一代细胞级硅基神经探针(横截面积为 5 10 毫米),具有超高密度填充(柄间最小 66 毫米),每个探针有 64 或 256 个紧密分布的记录点。我们表明,这些探针可以插入浅层或深层脑结构,并在自由活动的大鼠中连续数周记录大量尖峰。最后,我们展示了一种切片就位方法,用于精确记录相对于附近神经元和解剖特征(包括纹状体 m -阿片受体贴片)的记录点。这种可扩展的技术为检查神经回路内的信息处理以及潜在的人脑机接口提供了一种有价值的工具。
我们渐近地构造了一个静态球形激发态,该激发态在可重正化量子引力中无奇点,具有无背景性质。其直径由量子引力的关联长度给出,比普朗克长度长 2 个数量级,外部有史瓦西尾。内部的量子引力动力学采用非微扰高阶修正表达式来描述,该表达式假设了动力学在强耦合的边缘消失的物理要求。运行耦合常数是非线性和非局域性的表现,通过将其近似为依赖于径向坐标的平均场来管理。如果质量是普朗克质量的几倍,我们可以建立一个包含运行效应的引力势线性化运动方程组,并获得激发态作为其解。它可能是暗物质的候选者,并将为黑洞物理学提供新的视角。
Zhang, K., Chooi, W. H., Liu, S., Chin, J. S., Murray, A., Nizetic, D., ... Chew, S. Y. (2020)。通过纳米纤维上的逐层自组装肽涂层局部递送 CRISPR/dCas9 用于神经组织工程。生物材料,256,120225‑。doi:10.1016/j.biomaterials.2020.120225
晶界 (GB) 中的局部原子排列与边界晶粒中的局部原子排列不同,以便能够调节相应晶格的取向误差。[1–8] 从结构上讲,局部排列包括沿边界重复的位错核和结构单元。从化学上讲,位错核和其他结构单元并不总是化学计量的,甚至可能具有复杂性。[9] 总之,GB 和晶粒的化学和结构差异导致局部 GB 振动,这在许多领域都引起了人们的兴趣。例如,在热传输 [4–7,10] 和红外光学中,[4,8] 声子频率和寿命决定了材料响应的关键方面。此外,局部振动的变化可以显著改变功能材料的自由能景观 [11–13] 或增加熵对自由能的贡献并影响相变。[14–16]
反向传播是培训神经网络的基础算法,也是深度学习成功的关键驱动力。然而,由于现有文献所强调的,由于三个方面的限制,其生物学上的合理性受到了挑战:体重对称性,对全球误差信号的依赖和训练的双相性质。尽管已经提出了各种替代学习方法来解决这些问题,但大多数要么无法满足同时发生的所有三个标准,要么无法降低结果。受到金字塔神经元动力学和可塑性的启发,我们提出了树突局部学习(DLL),这是一种旨在克服这些挑战的新型学习算法。广泛的经验实验表明,DLL满足生物合理性的所有三个标准,同时在满足这些要求的算法中实现最先进的性能。此外,DLL在包括MLP,CNN和RNN在内的一系列架构中表现出强烈的概括。这些结果是针对现有的生物学上合理学习算法的基准,为未来的研究提供了有价值的经验见解。我们希望这项研究能够激发用于培训多层网络的新生物学合理算法的发展,并在神经科学和机器学习方面发展进步。
能够将可观的电子设备与感应,致动和药物输送能力相结合,并具有几个已批准FDA且正在临床使用的示例。[5 - 8]例如,药丸形的药丸可通过内窥镜手术挑战或不可行的胃肠道区域。[8]然而,可耐用装置的大小在基本上受到限制,以吞咽(例如,Pillcam SB 3的直径为11.4毫米,长度为26.2 mm)[9] [9],减轻了意外情况的风险(对于常规胶囊的障碍物而言1.4%)[10]或INSTAIL ENDORISITIONS [10] [10] [10]尺寸的限制限制了可以集成到可观系统中的可能的功能,尤其是因为微电子等主动组件(例如微电子)是刚性的,而平面零件则必须集成到系统中。例如,大多数可摄取的电子设备没有能力将其积极运输到目标区域。[8]
例如,药丸形状的 PillCam 可以进入通过内窥镜手术难以进入或无法进入的胃肠道区域。[8] 然而,可摄取设备的尺寸从根本上受到吞咽能力(例如,PillCam SB 3 的直径为 11.4 毫米,长度为 26.2 毫米)[9] 和减少意外滞留(传统胶囊内窥镜为 1.4%)[10] 或需要手术干预的肠梗阻风险的限制。尺寸限制限制了可集成到可摄取系统中的可能功能,特别是因为微电子等有源元件是刚性平面部件,必须组装到系统中。例如,大多数可摄取电子产品无法主动输送到目标区域。[8]
摘要 — 快速局部加热技术允许连接对温度敏感的材料和组件,而不会出现高温焊料回流工艺中常见的热损伤。这对于制造热膨胀系数差异较大的材料组件也很有利,不会产生弯曲或开裂。使用夹在焊料预制件之间的放热反应箔是一种很有前途的局部快速焊接工艺,因为它不需要任何外部热源。反应箔由交替堆叠的 Ni 和 Al 纳米层形成,直到达到总膜厚度。一旦使用外部电源激活薄膜,就会发生反应并释放出一定量的能量,这些能量会转移到焊料预制件上。如果这个能量足够高,焊料预制件就会熔化并确保组件材料之间的粘合。研究了施加的压力、反应膜 (RF) 厚度以及焊料和附着材料的化学成分和厚度的影响。结果表明,工艺过程中施加的压力对接头初始质量有很大影响,当压力值在 0.5 到 100 kPa 之间时,空洞率从 64% 降至 26%。这可以通过在较高压力下焊料流动性改善从而带来更好的表面润湿性并消除空洞来解释。另外,一旦焊料熔化时间增加,接头质量就会改善。当反应箔的厚度增加(额外的感应能量)或焊料、Cu 和/或 Si 的厚度减少(更少的能量消耗)时可以观察到这种关系。由于冷却速度高,与在炉中使用传统焊料回流工艺获得的结构相比,使用 RF 实现的 AuSn 接头的微观结构显示出非常细的相分布。在 100 kPa 压力下,对组装在活性金属钎焊基板上的 350 mm 厚硅二极管进行剪切试验,以评估接头的机械性能。RF 厚 60 mm,夹在两个 25 mm 厚的 96.5 Sn 3 Ag .5 Cu (SAC) 预制件之间。测试样品的空隙率约为 37%,剪切强度值超过 9.5 MPa,远高于 MIL-STD-883H 要求。最后,将工艺对组装二极管电气性能的影响与常用的焊料回流组件进行了比较,结果显示变化可以忽略不计。
Joanna Szczurkowska, 1,8 Seong-Il Lee, 1,8 Alan Guo, 1 Andrzej W. Cwetsch, 4,5 Tanvir Khan, 1 Sneha Rao, 1 Gerd Walz, 2 Tobias B. Huber, 3 Laura Cancedda, 4,6 Sophie Pautot, 7 and Maya Shelly 1,9, * 1 Department of Neurobiology and行为,Stony Brook大学,Stony Brook,纽约州11794-5230,美国2医学系,大学医学中心弗莱堡大学医学院,弗莱堡大学医学院,弗莱堡大学,弗莱堡IM BREISGAU,德国3 III。Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 4 Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, Genova, Italy 5 Universita` degli Studi di Genova, Genova, Italy 6 Dulbecco Telethon Institute, Italy 7 ITAV-CNRS USR 3505, Toulouse 31106,法国8这些作者同等贡献9铅联系 *通信:maya.shelly@stonybrook.edu https://doi.org/10.1016/j.cellerep.2020.03.03.083