然而,它们的整体结构是以固定结构为特征的,当面对数据扰动时,在适应性和灵活性方面构成了挑战,从而限制了整体性能。为了解决这些局限性,本文提出了一个受近期神经科学发现启发的模块化卷积正交复发性神经网络(McOrnnmCD-ANN)。全面的文献综述将与整体架构相关的挑战背景,从而鉴定了神经网络结构,这些挑战可以增强外汇价格波动的预测,例如在最突出的交易货币中,欧元/GBP配对。通过针对最新技术的详细比较分析对提出的McOrnnMCD-ANN进行了详细评估,例如Bicudnnl-STM,CNN – LSTM,LSTM-GRU,LSTM-GRU,CLSTM,以及集合建模和单个单片CNN和RNN模型。结果表明mcornnmcd-
摘要 - 在斜坡合并是自动驾驶中复杂的流行情况。由于驾驶环境的不确定性,大多数基于规则的模型无法解决此问题。在这项研究中,我们设计了一种深入的增强学习方法(DRL)方法,以解决不确定的场景中坡道合并问题,并修改双胞胎延迟的深层确定性策略梯度算法(TD3)的结构,使用长期短期内存(LSTM)基于时间信息选择一个动作。所提出的方法应用于坡度合并,并在城市流动性(SUMO)的模拟中进行了验证。结果表明,所提出的方法在不确定的TRAFFICEARIOS中执行明显更好的概括。索引术语 - 坡道合并,深度强化学习(DRL),长期记忆(LSTM),城市流动性的模拟(SUMO)
Abstract —In the volatile and uncertain financial markets of the post-COVID-19 era, our study conducts a comparative analysis of traditional econometric models—specifically, the AutoRegressive Integrated Moving Average (ARIMA) and Holt's Linear Exponential Smoothing (Holt's LES)—against advanced machine learning techniques, including Support Vector Regression (SVR), Long Short-Term Memory (LSTM) networks, and Gated复发单位(GRU)。专注于标准普尔500指数和SSE指数的每日股票价格,该研究利用了一系列指标,例如R-squared,rmse,Mape和Mae来评估这些方法的预测准确性。这种方法使我们能够探索如何在大流行煽动的持续市场波动中捕获美国和中国等主要经济体的股票市场运动的复杂动态方面的票价。调查结果表明,虽然像Arima这样的传统模型在短期视野中表现出强烈的预测精度,但LSTM网络在捕获数据中捕获复杂的非线性模式方面表现出色,表现出优于更长的预测范围。这种细微的比较强调了每种模型的优势和局限性,LSTM的出现是最有效地导航大流行后金融市场的不可预测动态。我们的结果提供了对股票价格预测,帮助投资者,政策制定者和学者的预测方法的重要见解,以在持续的市场挑战中做出明智的决策。
摘要 - 网络入侵是当今所有行业的重要问题。该解决方案的关键部分是能够有效检测入侵。随着人工智能的最新进展,当前的研究已经开始采用深度学习方法进行入侵检测。当前的多级入侵检测方法包括使用深神经网络。但是,它未能考虑到数据集中存在的数据对象和长期依赖关系之间的空间关系。本文提出了一种新型体系结构,以打击具有卷积神经网络(CNN)模块的入侵检测,以及长期内存(LSTM)模块以及带有支持向量机(SVM)分类功能的长期记忆(LSTM)。分析之后是对常规机器学习技术和深度学习方法的比较,这些方法突出了可以进一步探索的领域。
- “心律失常检测” - “心电图心律失常” - “室性心律失常” - “室上性心律失常” - “早搏” - “心脏传导阻滞” - “心动过缓” - “心动过速” - “12 导联心电图” - “心脏信号处理” - “心电图中的深度学习” - “CNN” - “DNN” - “LSTM” - “Transformers” - “混合模型”
摘要 — 大脑中的神经元会产生电信号,这些电信号的集体发射会产生脑电波。这些脑电波信号是使用 EEG(脑电图)设备以微电压形式捕获的。EEG 传感器捕获的这些信号序列具有可用于分类的嵌入特征。这些信号可作为严重运动障碍患者的替代输入。不同颜色的分类可以映射到许多功能,例如定向运动。在本文中,使用基于注意力的深度学习网络对来自 NeuroSky Mindwave 耳机(单电极 EEG 传感器)的原始 EEG 信号进行分类。基于注意力的 LSTM 网络已经用于对两种不同颜色和四种不同颜色进行分类。使用上述基于注意力的 LSTM 网络,两种颜色的分类准确率为 93.5%,四种信号的分类准确率为 65.75%。
在本文中,我们提出了一个流媒体模型,以区分旨在用于智能家居设备的语音查询和背景语音。提出的模型由多个具有剩余连接的CNN层组成,然后是堆叠的LSTM架构。通过使用单向LSTM层和因果均值聚集层来实现流式功能,以形成最终的话语级别预测到当前帧。为了避免在线流媒体推理期间的冗余计算,我们为每个卷积操作都使用一种缓存机制。对设备定向与非设备定向任务的实验结果表明,与以前的最佳模型相比,所提出的模型降低了41%。进一步,我们表明,与基于注意力的模型相比,所提出的模型能够在时间上准确预测。
摘要。使用基于特征的混合方法,将基于变换的特征与基于图像的灰度共生矩阵特征相结合。在对脑出血 CT 图像进行分类时,基于特征的组合策略比基于图像特征和基于变换特征的技术表现更好。使用深度学习技术(尤其是长短期记忆 (LSTM))的自然语言处理已成为情绪分析和文本分析等应用中的首选。这项工作提出了一个完全自动化的深度学习系统,用于对放射数据进行分类以诊断颅内出血 (ICH)。长短期记忆 (LSTM) 单元、逻辑函数和 1D 卷积神经网络 (CNN) 构成了建议的自动化深度学习架构。这些组件均使用 12,852 份头部计算机断层扫描 (CT) 放射学报告的大型数据集进行训练和评估。
抽象客户损耗尤其是诸如零售,银行和电信的行业中的一个问题,在零售,银行和电信中,客户获取成本大大高于保留重复客户的成本。现在,通过Ma-Chine学习模型可以预测客户缺乏兴趣,而深度学习已经在早期干预措施中发挥了重要作用。In order to assess the quality of churn prediction, the study tests six basic machine learning techniques: random forest, logistic regression, and the k-nearest neigh- bors method, as well as four deep learning techniques: long short term memory (LSTM), bidirectional LSTM, convolutional neural networks (CNN), and artificial neural networks (ANN).然后,通过评估矩阵评估模型的性能,包括从大型数据集中提取功能后,从客户的行为数据中的准确性,精度,回忆和F1得分进行评估。该研究表明,DL模型可改善对搅拌和非束缚客户分类以及随机森林以及其他ML模型可比精度的处理。这项研究可以得出结论,LSTM和ANN模型在实际世界的搅动预测情况下取消了模型,尤其是在需要长期消费者行为评估时。为了增强给定预测模型的当前结果,这项研究重点是数据预处理和引导,特征提取和多个模型组合的效果。该研究的含义为公司提供了特定的实用建议,以通过采用数据交易技术有效地管理客户流失并增加客户保留率。
挑战,我们提出了一种新型的三潮混合模型,该模型与RGB像素和基于骨架的特征相结合以识别手势。在过程中,我们对数据集进行了预处理,包括增强功能,以进行旋转,翻译和缩放独立系统。我们采用了三个流混合模型,使用深度学习模块的功率提取多功能融合。在第一个流中,我们使用预训练的成像网模式提取了初始特征,然后使用GRU和LSTM模块的多层来增强此功能。在第二个流中,我们使用预先训练的Resenet模块提取了初始特征,并通过GRU和LSTM模块的各种组合对其进行了增强。在第三次流中,我们使用介质管提取了手姿势的关键点,然后使用堆叠的LSTM来增强它们,以构建分层功能。之后,我们加入了三个功能以产生最终。最后,我们采用了一个分类模拟来产生概率图以生成预测的输出。我们主要通过利用基于像素的深度学习功能和基于POS估计的堆叠深度学习功能来产生强大的功能向量,其中包括具有带有划痕深度学习模型的预训练的模型,以实现无与伦比的手势检测功能。所提出的系统的设计旨在在挑战工业情况下有用并创建高效,无接触式的接口。我们对新创建的手持数据集进行了广泛的实验,并提出的模型达到了良好的性能准确性。