Loading...
机构名称:
¥ 1.0

摘要 - 网络入侵是当今所有行业的重要问题。该解决方案的关键部分是能够有效检测入侵。随着人工智能的最新进展,当前的研究已经开始采用深度学习方法进行入侵检测。当前的多级入侵检测方法包括使用深神经网络。但是,它未能考虑到数据集中存在的数据对象和长期依赖关系之间的空间关系。本文提出了一种新型体系结构,以打击具有卷积神经网络(CNN)模块的入侵检测,以及长期内存(LSTM)模块以及带有支持向量机(SVM)分类功能的长期记忆(LSTM)。分析之后是对常规机器学习技术和深度学习方法的比较,这些方法突出了可以进一步探索的领域。

入侵检测:一种深度学习方法

入侵检测:一种深度学习方法PDF文件第1页

入侵检测:一种深度学习方法PDF文件第2页

入侵检测:一种深度学习方法PDF文件第3页

相关文件推荐