摘要在许多网络安全环境中,敌对行动的实时检测在保护网络基础架构中起着基本作用。在这种情况下,基于签名或异常检测的入侵检测系统(IDS)被广泛用于分析网络流量。基于签名的检测依赖于已知攻击特征的数据库,并且异常检测主要基于人工智能(AI)技术。后者有望实时检测新型的网络攻击。在这项工作中,我们提出了Retina-IDS,该框架将CicflowMeter工具与机器学习技术集成在一起,以分析实时网络流量模式并检测可能提出可能入侵的异常。所考虑的机器学习技术,随机森林和多层网络基于选定的功能,以提高效率和可扩展性。要选择功能并训练模型,我们使用了公共数据集Csecici-IDS2018的版本。通过识别不同形式的入侵,框架的有效性已在实际情况下进行了测试。分析结果,我们得出结论,提出的解决方案显示出宝贵的特征。
主要关键词