摘要:随着加密流量的兴起,传统的网络分析方法变得越来越有效,导致转向基于深度学习的方法。其中,基于多模式的基于学习的分类方法由于能够利用加密流量的各种功能集而提高了分类准确性,因此引起了人们的关注。但是,现有的研究主要依赖于晚期融合技术,这阻碍了数据中深度特征的全面利用。为了解决此限制,我们提出了一种新型的多模式加密流量分类模型,该模型将模态融合与多尺度特征提取同步。具体来说,我们的方法在特征提取的每个阶段进行实时融合方式,在每个级别上增强特征表示,并保留层间相关性,以实现更有效的学习。这种连续的融合策略提高了模型检测加密流量中细微变化的能力,同时促进其鲁棒性和对不断发展网络条件的适应性。对两个现实世界加密的流量数据集的实验结果表明,我们的方法达到的分类精度为98.23%和97.63%,表现优于现有的基于多模式学习的方法。
2 文献综述 6 2.1 愿景和动机 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.1 网络切片面临的挑战 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... . ... ... 12 2.6.3 物联网(IoT)和工业物联网(IIoT) .................................................................................. 14 2.7 5G 面临的挑战 .................................................................................................................................................. 15 2.7.1 网络软件化 .................................................................................................................................................. 15
摘要:在过去的两年中,AI和机器人技术与灾难响应和恢复有良好的整合。研究论文重点介绍了AI驱动机器人在处理各种灾难场景中的进步,从地震,洪水和飓风等自然灾害到涉及工业事故和恐怖袭击的人造危机。它审查了允许机器人在危险的景观中移动,进行搜索和救援,运输医学并参与恢复基础设施的最先进技术。它们包括用于实时数据处理的机器学习算法,自主导航,人类机器人交互和多机器人协调。本文还解释了AI-Robotics系统的一些挑战和局限性,包括道德问题,物流和用于部署的标准化协议。我们讨论了案例研究和实验结果如何指出AI驱动的机器人将灾难反应和恢复转变为挽救生命和经济补救活动的潜力。
与应用相关的元数据提取进行深度数据包检查。应用程序元数据智能(AMI)扩展了从Gigamon应用程序可视化和过滤得出的应用层可见性,并支持获取应用程序行为的全面方法。它提供了有关东西方流量的宝贵信息,而无需捕获整个数据包。元数据提取有助于减少正在处理的数据量,从而使其更容易进行分析。它包含诸如源和目标IP地址,端口,协议,时间戳以及威胁检测和调查中使用的其他相关上下文信息之类的属性。Gigamon AMI支持近7,000个协议,应用程序,用户行为和L4 – L7属性,这些属性涉及超过4,000个标准和自定义应用程序。
本文深入研究了RV32IMAC RISC-V System-Chip(SOC)的ASIC实施,重点介绍了其对各种监视应用的适应性。通过利用RISC-V架构的功能,SOC旨在为各种环境(包括工业部门,战区和放射性领域)提供灵活,高效的平台。通过细致的建筑设计和优化策略,Soc在绩效,功率效率和成本效益之间取得了平衡。值得注意的是,它集成了针对监视操作的专门说明,以及对传感器集成和实时数据处理的强大支持。此外,SOC的实施利用高级技术来确保与新兴监视系统的可靠性,可扩展性和兼容性。具有自主处理复杂任务并通过基于IoT的服务来促进无缝沟通的能力,RV32IMAC RISC-V SOC的ASIC实施代表了监视技术领域的重大进步,有望增强情境意识和威胁能力。