当前生活方式肥胖和不良节食习惯导致的健康问题使得监测卡路里摄入成为必要。例如,评估食物的卡路里值对于糖尿病患者控制体重和控制其他慢性疾病至关重要。相反,大多数常用的卡路里控制机制,如估算卡路里含量或在复杂膳食中使用营养图表,不仅繁琐,而且容易出错。这反过来证明了需要由技术和自动化驱动的系统,在这些系统中,卡路里估算几乎不需要用户付出任何努力。当今时代还见证了计算机视觉和深度学习的进步,这有助于更好地应对上述挑战。卷积神经网络是一种以图像识别而闻名的深度学习模型,其众多应用之一是从图像中识别食物,并取得了巨大的成果。CNN 有助于根据某些视觉特征(例如纹理颜色和形状)识别食物,结合食物的体积估计,它们甚至可以帮助计算各种盘子的卡路里含量。因此,出现了比节食系统更方便的卡路里估算应用程序,节食系统需要粘贴食物图片并查询食物的卡路里含量,而满盘没有分量,图像可用于估算卡路里。