摘要 本研究重点研究和使用机器学习 (ML) 方法来识别可再生微电网中的故障。它强调了与这些动态能源系统相关的困难和复杂性。对从太阳能和风能生产、电池存储状态、故障信号和机器学习模型性能中获得的实际数据的检查突出了可再生微电网中故障检测技术的复杂性。对可再生能源生产数据的分析表明,太阳能和风能的输出存在波动,突出了某些时间段内约 5-10% 的差异,从而说明了可再生能源的间歇性特性。同时,微电网内电池中存储的能量在时间间隔内逐渐下降约 3-5%,表明可能对系统稳定性产生影响。故障检测信号显示出不稳定的模式,这强调了在系统内部查找和分类问题所涉及的复杂性。对机器学习模型的评估(包括监督和无监督学习方法)揭示了许多性能指标。监督模型的准确率更高,通常在 85% 到 90% 之间。但是,它们容易偶尔出现错误分类。相比之下,无监督模型的准确率中等,通常在 75% 到 80% 之间。它们在检测故障方面表现出灵活性,但其精度有限。该研究强调需要结合使用监督和无监督机器学习模型来提高可再生微电网故障检测的准确性。这些结果为了解故障检测程序的复杂性和困难性提供了宝贵的见解,这可能有助于进一步提高可再生微电网系统的可靠性和耐用性。
主要关键词