简介 机器学习 (ML) 方法在心理健康和相关研究中得到越来越多地应用。在我们上一篇论文中,我们讨论了两种 ML 方法,即逻辑回归和 k 均值聚类。1 在本报告中,我们重点介绍两种更先进的 ML 方法,即支持向量机 (SVM) 和人工神经网络 (ANN),以及它们在精神病学中的应用。SVM 是一种用于对标记结果进行分类的监督学习方法。SVM 应用来自每个类别的少量样本(称为“支持向量”)来构建分类器,将样本分成不同的类别。2 SVM 是线性判别函数的扩展,线性判别函数是一种流行的监督学习统计方法,因为它试图适应非线性判别函数以实现更精确的分类。3 SVM 已被广泛应用,包括在精神病学领域。例如,在重度抑郁症 (MDD) 研究中,SVM 被用于通过人口统计学和临床变量(如年龄、性别、教育水平、药物等)从健康对照组中识别出 MDD 患者。4 这也是神经成像中的一种流行技术。5 6 我们将在下一节进一步讨论 SVM。ANN 由许多称为“人工神经元”的简单单元组成。ANN 的主要组成部分是输入层、隐藏层和输出层。计算机科学家已经开发出 ANN 来模仿生物神经网络,通过建立模型来模仿人类大脑从训练数据中学习的过程,而无需任何数据的先验知识。7 例如,在
主要关键词