近年来,用于替代失去肢体的假肢设备的性能越来越好。软件和硬件方面的最新进展使得解码脑电图 (EEG) 信号成为可能,从而通过脑机接口 (BCI) 改善对有源假肢的控制。大多数 BCI 研究都集中在上半身。尽管近年来针对下肢的 BCI 研究有所增加,但我们对与下肢运动相关的神经模式的了解仍然存在差距。因此,本研究的主要目的是展示从 EEG 数据记录中解码下肢运动的可行性。第二个目标是调查截肢者众所周知的神经可塑性适应是否会影响解码性能。为了解决这个问题,我们收集了多名下肢截肢者和一个匹配的健全对照组的数据。利用这些数据,我们训练并评估了已被证明对上肢 BCI 有效的常见 BCI 方法。两组的平均测试解码准确率均为 84%,我们的结果表明,使用 EEG 数据可以准确区分不同的下肢运动。健康受试者和下肢截肢受试者对这些运动的解码性能没有显著差异(p = 0.99)。这些结果表明使用 BCI 进行下肢假肢控制的可行性,并表明解码性能不受两组之间神经可塑性引起的差异的影响。