抽象目的:在牙科手术之前,使用手动射线照片来计划治疗时间并确定骨骼成熟度。本研究旨在使用不同的深度学习方法来确定手工射线照片的性别。方法:预先处理了1044个个体(534名男性和510名女性)的左手射线照相仪,以阐明图像并调整对比度。在性别分类问题中,Alexnet,VGG16和VGG19转移学习方法都被用作单独的分类器,并将这些方法从这些方法中获取并赋予了支持向量机(SVM)分类器。结果:结果表明,图像分析和深度学习技术在性别确定方面提供了91.1%的精度。结论:手工射线照相表现出性二态性,可用于性别预测。关键字:深度学习; İmage分析;手动X光片;性别确定