Loading...
机构名称:
¥ 1.0

摘要: - 心血管疾病是全球死亡的主要原因,心律不齐是一种特别致命的疾病。通过分析心电图数据对心律不齐的有效鉴定对于有效治疗至关重要。心律不齐。本研究提出了一种新型的方法,可以自动诊断心律不齐和窦性心律充血性心力衰竭。所提出的方法涉及利用带有比例图的多尺度滤波器库,该库利用了预处理的ECG数据和未加权的,未加权的,预先训练的卷积神经网络。时间频率纹理提供了来自单铅ECG记录的基本特征的两维表示。随后,专门为心律不齐分类设计的深度学习神经网络用于标记和分类特征数据的集合。本研究研究了深度学习模型从心电图数据分类心律不齐的功效。该研究探讨了不同的卷积神经网络体系结构使用多尺度滤波器库和基于比例图的表示如何工作。预先训练的网络产生的分类模型在概括方面既准确且比原始网络更有效。比较已经训练的模型和未经培训的模型表明,预先训练的网络,尤其是VGG16,在许多方面表现更好,例如准确性和精度。这表明有可能改善基于ECG的诊断,为高级,个性化的医疗保健解决方案铺平了道路。

使用深度学习架构和

使用深度学习架构和PDF文件第1页

使用深度学习架构和PDF文件第2页

使用深度学习架构和PDF文件第3页

使用深度学习架构和PDF文件第4页

使用深度学习架构和PDF文件第5页