虽然第一个假设是标准的,第二个假设在某种程度上似乎是必要的,但双模式 CVQC 是我们在本文中引入的非标准密码构建块。粗略地说,如果存在一个标准模式,其中方案是正确的,以及一个模拟模式,其中不存在任何接受证明(尽管在此模式下,方案对于是的实例可能不一定正确),则 CVQC 协议是双模式的。即使给定验证密钥,这些模式也必须在计算上无法区分。实际上,我们不知道任何满足此双模式属性的 CVQC 构造,因此我们将该属性放宽为“陷门”变体,其中存在一个满足双模式属性的陷门设置算法(在计算上与原始算法无法区分)。我们证明这种放松足以构建量子零 iO(以及经典电路的 LWE 和后量子 iO),并提出一种陷门双模 CVQC 的构造,可以防止量子随机预言模型 (QROM) 中的带错学习 (LWE) 问题。
¾ RUSA 的新阶段目标是覆盖未得到服务、服务不足的地区、偏远/农村地区、困难地理区域、LWE(左翼极端主义)地区、NER(东北地区)、理想地区、二线城市、GER(毛入学率)较低的地区等,并惠及最弱势地区和 SEDG(社会经济弱势群体)。
(发送者)可否认加密提供了非常强的隐私保障:在攻击者胁迫下事后“打开”其密文的发送者能够生成与其选择的任何明文一致的“假”局部随机选择。已知唯一完全有效的公钥可否认加密构造依赖于不可区分混淆 (iO)(目前只能基于亚指数硬度假设)。在这项工作中,我们研究了 (发送者)可否认加密,其中加密过程是量子算法,但密文是经典的。首先,我们在此环境中提出了经典定义的量子类似物。我们给出一个满足该定义的完全有效构造,假设带错学习 (LWE) 问题的量子硬度。其次,我们表明量子计算可以解锁一种从根本上更强大的可否认加密形式,我们称之为完全不可解释性。不可解释性的核心原语是量子计算,对于该计算,没有可证明的有效方法(例如展示“计算历史”)来确定输出确实是计算的结果。我们给出了一个在随机预言模型中安全的构造,假设 LWE 具有量子硬度。至关重要的是,这个概念意味着一种“事前”的针对强制的保护形式,这是经典方法无法实现的特性。
摘要 - 同构加密(FHE)是一种加密技术,具有通过对加密数据启用计算来彻底改变数据隐私的潜力。最近,CKKS FHE方案变得非常流行,因为它可以处理实数。但是,CKKS计算尚未普遍存在,因为它在计算和内存方面都是资源密集的,并且比未加密数据的计算要慢多个数量级。最新的算法和硬件优化可加速CKKS计算是有希望的,但是由于昂贵的操作称为Boottrapping,CKKS计算继续表现不佳。虽然已经做出了几项努力来加速自举,但它仍然是主要的性能瓶颈。这种性能瓶颈的原因之一是,与计算Boottrapping算法的CKK的非自举一部分不同,是固有的顺序,并且在数据中显示了相互依存关系。为了应对这一挑战,在本文中,我们引入了使用混合方案切换方法的加速器。HEAP使用CKKS方案进行非引导步骤,但是在执行CKKS方案的自举步骤时,请切换到TFHE方案。通过从单个rlwe密文中提取系数来表示多个LWE密文,从而向TFHE方案转变为TFHE方案。我们将自举函数合并到盲骨操作中,并同时将盲的操作应用于所有LWE密文。堆中的方法是硬件的不可知论,可以映射到具有多个计算节点的任何系统。随后可行地进行引导的并行执行是可行的,因为不同的LWE密文之间没有数据依赖性。使用我们的方法,我们需要较小的自举键,从而从键的主内存中读取约18×少量数据。此外,我们在堆中介绍了各种硬件优化 - 从模块化算术级别到NTT和盲核数据PATAPATH优化。为了评估HEAP,我们在RTL中实现了堆,并将其映射到一个FPGA系统和八型FPGA系统。我们对自举操作的堆的全面评估显示为15。与Fab相比, 39×改进。 同样,对逻辑回归模型训练的堆的评估显示了14。 71×和11。 与Fab和Fab-2实现相比, 57×改进。 索引术语 - ckks,tfhe,方案切换,自举,FPGA加速39×改进。同样,对逻辑回归模型训练的堆的评估显示了14。71×和11。57×改进。索引术语 - ckks,tfhe,方案切换,自举,FPGA加速
摘要 - 肌形加密(HE)是用于构建隐私应用程序的常用工具。但是,在许多客户和高延迟网络的情况下,由于密码大小较大而引起的通信成本是bot-tleneck。在本文中,我们提出了一种新的压缩技术,该技术使用具有较小的密文的添加剂同构加密方案,以基于错误的学习(LWE)来压缩大型同构密文。我们的技术利用了此类密文的解密中的线性步骤,以将部分解密委托给服务器。我们达到的压缩比最高90%,这仅需要一个小的压缩密钥。通过同时压缩多个密文,我们的压缩率超过99%。我们的压缩技术可以很容易地应用于将LWE密文从服务器传输到客户端的应用程序,以作为对查询的响应。更重要的是,我们将技术应用于私人信息检索(PIR),其中客户端访问数据库而无需透露其查询。使用我们的压缩技术,我们提出了Zippir,这是一种PIR协议,它在文献中所有协议中达到了最低的总体通信成本。Zippir不需要在预处理阶段与客户进行任何通信,这是用于与短暂客户端或高延迟网络的PIR用例的绝佳解决方案。
摘要。我们为量子计算 (BQP) 构建了一个经典可验证的简洁交互式论证,其通信复杂性和验证器运行时间在 BQP 计算的运行时间内是多对数的(在安全参数中是多项式的)。我们的协议是安全的,假设不可区分混淆 (iO) 和错误学习 (LWE) 的后量子安全性。这是第一个简洁的论证,适用于普通模型中的量子计算;先前的工作(Chia-Chung-Yamakawa,TCC '20)既需要较长的公共参考字符串,又需要非黑盒使用以随机预言机建模的哈希函数。在技术层面,我们重新审视了构建经典可验证量子计算的框架(Mahadev,FOCS '18)。我们为 Mahadev 的协议提供了一个独立的模块化安全性证明,我们认为这是有独立意义的。我们的证明很容易推广到验证者的第一条消息(包含许多公钥)被压缩的场景。接下来,我们将压缩公钥的概念形式化;我们将该对象视为受限/可编程 PRF 的泛化,并基于不可区分混淆对其进行实例化。最后,我们使用(足够可组合的)NP 简洁知识论证将上述协议编译成完全简洁的论证。使用我们的框架,我们获得了几个额外的结果,包括 - QMA 的简洁论证(给定见证的多个副本), - 量子随机预言模型中 BQP(或 QMA)的简洁非交互式论证,以及 - 假设后量子 LWE(无 iO)的 BQP(或 QMA)的简洁批处理论证。
BKZ仿真的主要作用着重于显示BKZ算法的高块大小的行为,因此,当前的晶格安全性分析(例如,对当前LWE/NTRU基于的基于LWE/NTRU的方案)的有效/安全参数 - 选择这些模拟的有效/安全参数集的选择)。本文声称,当前的BKZ模拟不一定足够准确,可以进行精确的晶格安全分析,因此,这项研究首次介绍了两种可证明的“更新GSO/系数/系数的仿真”和“ LLL功能的仿真”的工具,以用于设计准确的BKZ模拟。本文证明,对于典型的SVP求解器“ Z”(例如,GNR驱动,筛分,离散的修剪),如果对“ z_memulate”进行了模拟,可以证明“ z_memulate”可以模仿“ z”的实际运行行为,那么我们可以通过“模拟我们的bkz模拟”来模拟'svpsolver'= z____________________________________________________________________________________________________________________________________________________求解器“ z”。我们的BKZ模拟解决了以前的BKZ模拟中的不同问题和弱点。Our tests show that, altogether, the shape of GSO norms ∥ b ∗ i ∥ 2 , the root-Hermite factor of basis, estimated total-cost and the running-time in “Experimental Running of Original BKZ algorithm” are closer to the corresponding test results in “Our BKZ Simulation” than to the test results in “Chen-Nguyen's BKZ simulation”, “BKZ simulation by Shi Bai et al.”和其他一些BKZ模型和近似值。此外,更新Chen-Nguyen的BKZ模拟的GSO规范/系数的错误策略会导致晶格块中的许多GSO违规错误,另一方面,我们的测试结果验证了我们的BKZ模拟中所有这些错误自动消除了所有这些错误。
我们的工作最大程度地减少了安全计算中的互动,从而解决了沟通的高昂成本,尤其是与许多客户。我们介绍了单次私人聚合OPA,使客户只能在单服务器设置中进行每个聚合评估一次。这简化了辍学和动态参与,与Bonawitz等人等多轮协议形成鲜明对比。(CCS'17)(以及随后的作品),并避免了类似于Yoso的复杂委员会选择。OPA的沟通行为紧密地模仿每个客户群只会说话一次的学习。OPA建立在LWR,LWE,班级组和DCR上,可确保所有客户的单轮通信,同时还可以在客户数量中实现次线性开销,从而使其渐近且实用。我们通过中止和投入验证实现恶意安全,以防止中毒攻击,这在联邦学习中尤其重要,在这种学习中,对手试图操纵梯度以降低模型性能或引入偏见。我们从(阈值)密钥同型PRF和(2)的种子同源性PRG和秘密共享的(2)建立了两种口味(1)。阈值关键同构PRF解决了以前依赖于DDH和LWR的工作中观察到的缺点。(加密,2013年),将其标记为对我们工作的独立贡献。我们的其他贡献包括(阈值)键合型PRF和种子塑形PRG的新结构,这些构造是在LWE,DCR假设和其他未知顺序的类组下安全的结构。
新德里,2月9日(IANS)联盟内政部长阿米特·沙阿(Amit Shah)周日重申了政府在2026年3月31日之前从该国根除左翼极端主义(LWE)的决心。在一条消息称赞证券部队在淘汰了31位毛主义的毛派主义者的消息中,内政大臣也向两名勇敢的士兵致敬,他们在X上行动中奠定了生命。操作“”在消除反人类纳马斯主义的同时,我们失去了两名勇敢的士兵。国家将永远感谢这些英雄。