摘要。开发能够代替人类执行智力劳动的浇水自主移动机器人是机器人和生物信息学领域的一项紧迫任务。这些机器人可广泛应用于精准农业以节约资源,特别是在最佳植物灌溉领域。在全球城市化的背景下,本研究致力于开发用于微型温室的浇水自主移动机器人。该机器人集成了微电子和微自动化系统。创建了一个配备机械手和计算机视觉系统的原型机器人。开发的灌溉计划和种植方法可以高效利用资源,提高作物产量并降低劳动力成本。这种方法对城市农业具有重要的实用价值。
本文提出了一种用于空中操纵器的控制方案,该方案允许解决不同的运动问题:最终效应器位置控制,最终效应器轨迹跟踪控制和路径遵循控制。该方案具有两个级联的控制器:i)第一个控制器是基于数值方法的最小范数控制器,它仅通过修改控制器引用就可以解决三个运动控制问题。另外,由于空中操纵器机器人是一个冗余系统,即,完成任务具有额外的自由度,可以按层次顺序设置其他控制目标。作为控制的次要目标,提议在任务过程中维持机器人臂的所需配置。ii)第二个级联控制器旨在补偿系统的动力学,其中主要目的是将速度误差驱动到零。提出了机器人系统的耦合动态模型(己谐和机器人臂)。该模型通常是根据力和扭矩的函数开发的。但是,在这项工作中,它是参考速度的函数,这些速度通常是这些车辆的参考。通过相应的稳定性和鲁棒性分析给出了提出的对照算法。最后,为了验证控制方案,在部分结构化的环境中进行实验测试,其空中操纵器与空中平台和3DOF机器人臂相符。
摘要 - 为轻量级的水下车辆操纵器系统(UVM)开发自主干预措施在近年来引起了极大的关注,因为这些系统有机会降低干预运营成本。开发自主UVMS功能是具有挑战性的,因为缺乏可用的标准软件框架和管道。以前的作品为水下车辆提供了模拟环境和部署管道,但没有提供完整的UVMS软件框架。我们通过创建钓鱼者来解决此差距:用于开发本地化,控制和决策算法的软件框架,并支持模拟传输。我们通过实现最新的控制架构来验证此框架,并证明具有平均误差低于0.25 m的平均误差和Waypoint跟踪的能力,平均最终误差为0.398 m。
摘要 — 当轨迹类型已知时,可以使用数学方法计算机器人操纵器的轨迹规划。然而,由于复杂的数学方程和推导,传统的数学方法变得难以实现。本研究介绍了使用人工神经网络 (ANN) 来克服这些限制,通过求解非线性函数并适应轨迹规划的特点。本研究利用虚拟三自由度 (DOF) 机器人操纵器。将对 ANN 的超参数进行分析和选择,以获得 ANN 的最佳性能。最后,将使用样本数据通过将实际结果(数学方法)与 ANN 结果进行比较来评估开发的 ANN 拓扑的稳健性。 索引术语 — 人工神经网络、正向运动学、轨迹规划、机器人操纵器
摘要 - 在本文中,我们通过使用移动操纵器来解决可移动障碍(NAMO)问题之间的在线导航。与移动机器人不同,移动操纵器提供了有效地将障碍物从驾驶路径移出的优势,同时跟踪全球路径。但是,移动操纵器的高自由度(DOF)使全身控制复杂。为了应对这些挑战,我们提出了一个基于强化学习(RL)的模型预测路径积分(MPPI)框架。此策略包括识别从RL推动稳定的动作,从策略生成的数据中训练机器人 - 启动的Kinodynanic交互模型,以及在跟踪全球路径的同时,将MPPI中的该模型应用于MPPI进行操纵障碍。在我们的实验中,我们证明了我们的方法成功地将障碍物抛在一边,并在阻塞时坚持了全球路径。
子宫切除术是对子宫良性疾病的女性进行的最常见的外科手术,约占子宫切除术的90%(1)。在手术机器人之前,腹腔镜检查是唯一受到陡峭的学习曲线和对高级训练的需求的唯一最低侵入性选择。由于美国食品药品监督管理局于2005年批准了DA Vinci机器人(直觉手术),因此机器人技术的进步大大增加了其在妇科手术中的使用。目前,机器人简单子宫切除术(RSH)现在是美国最常见的机器人妇科手术(2,3)。与剖腹手术或腹腔镜检查相比,机器人手术的最大优势是人力资源的节省。RSH的设备每次手术的设备比总腹腔镜子宫切除术(TLH)稍贵,但是执行45个或更多的RSH程序比TLH更具成本效率(4,5)。使用子宫操纵剂的使用已经很好地确定,很明显,子宫操纵剂是手术期间最简单处理子宫的方法(6)。据报道, TLH没有子宫操纵器可减少手术时间和骨盆助手的需求(7)。 但是,很少有研究检查RSH是否需要操纵器。 在这项研究中,我们的目的是回顾性地比较有或没有操纵器的RSH案例,并确定术中使用操作剂的预测因素。TLH没有子宫操纵器可减少手术时间和骨盆助手的需求(7)。但是,很少有研究检查RSH是否需要操纵器。在这项研究中,我们的目的是回顾性地比较有或没有操纵器的RSH案例,并确定术中使用操作剂的预测因素。
I. 引言 A. 背景与动机 近年来,空中操控引起了机器人研究界的极大兴趣 [1]。多个研究小组展示了使用安装在空中机械手上的夹持器进行空中抓取 [2]–[4]。Lee 和 Kim、Kim 等人展示了协作式空中机械手在有障碍物的环境中抓取未知有效载荷 [5],[6]。Orsag 等人演示了使用四旋翼平台和安装在平台上的双臂执行拾取和钉孔任务 [7]。欧盟第七框架计划资助了几个空中机械手项目,研究空中机械手与环境交互时的运动规划和阻抗控制 [8]–[10]。德国航空航天中心的一个研究小组介绍了安装在直升机上的 7 自由度人形手臂的潜在应用 [11]。类似 Delta 的机构 [12] 和并联机械手 [13] 也被考虑用于空中机械手。这些现有的研究为空中操纵的研究提供了广阔的未来。然而,与地面操纵器相比,空中操纵器能够完成的任务仍处于非常初级的阶段。这是由于许多因素造成的,例如
本文提出了一种针对移动操纵器系统(MMS)的新控制策略,该策略集成了基于图像的视觉伺服(IBVS),以解决操作限制和安全限制。基于控制屏障功能(CBF)的概念的拟议方法提供了一种解决方案,以应对各种操作挑战,包括可见性约束,操纵器关节限制,预定义的系统速度界限和系统动态不确定性。提出的控制策略是两层结构,其中第一级CBF-IBVS控制器计算控制命令,并考虑到视野(FOV)约束。通过利用空空间技术,这些命令被转移到MMS的联合配置,同时考虑系统操作限制。随后在第二级中,用于整个MMS使用的CBF速度控制器对关节级的命令进行跟踪,以确保遵守预定义的系统的速度限制以及整个组合系统动力学的安全性。拟议的控制策略提供了出色的瞬态和稳态响应,并提高了对干扰和建模不确定性的弹性。此外,由于其计算复杂性较低,因此可以在板载计算系统上轻松实现,从而促进实时操作。通过仿真结果说明了拟议策略的有效性,与常规IBVS方法相比,该结果揭示了增强的性能和系统安全性。结果表明,所提出的方法可有效解决移动操纵器系统的具有挑战性的操作限制和安全限制,使其适合于实际应用。
估计世界上有超过10亿人会经历特殊的残疾。这些残疾可能会影响人们独立开展日常生活活动的能力,包括卧床,饮食,穿衣,对个人卫生的照顾等等。移动和操纵器机器人可以在人类环境周围移动并与物体和人进行物理互动,有可能帮助残疾人进行日常生活活动。尽管物理辅助机器人的愿景已经激发了跨机器人技术的研究数十年,但这种机器人最近才在能力,安全性和价格方面变得可行。越来越多的研究涉及端到端的机器人系统,这些机器人系统与现实世界中的残疾人相互作用。在本文中,我们调查了针对机器人,人与计算机相互作用和可访问技术的高级会议和期刊的有能力的人的身体辅助机器人的调查,以识别一般趋势和研究方法。然后,我们深入研究了三个特定的研究主题 - 相互作用界面,自主性水平和适应性 - 以及这些主题如何在物理辅助机器人研究中表现出来的框架。我们以未来研究的指示得出结论。
工业部门正在经历一个变革阶段,随着先进的机器人技术和人工智能(AI)技术的整合。本论文,探讨了数字双技术的协同应用以及增强学习在增强工业环境中机器人操纵器的效率和适应能力方面的应用。这项研究的核心前提重点是解决动态和复杂工业环境中手动程序方法的局限性。手动编程通常缺乏在各种且无法预测的环境中有效操作所需的适应性和学习能力。加固学习的合并使机器人操纵者能够通过与环境的互动来学习和调整,从而提高了运营效率,并最大程度地减少了对广泛编程工作的需求。数字双胞胎是物理环境的数字虚拟复制品。这允许在受控的,无风险的设置中对机器人操纵器行为进行模拟,分析和优化。将数字双胞胎与增强学习的集成能够对机器人系统进行有效的培训,从而使他们能够学习复杂的任务并适应新场景,而无需与现实培训相关的身体磨损和风险,并设置了环境。研究方法涉及开发数字双胞胎模拟环境,强化学习算法在此环境中的机器人操作器中的应用,并引起了学习任务转移能力对现实应用程序的重要性。该研究还研究了与数字双胞胎和加强学习技术相关的挑战。预期的结果包括提高机器人操纵器在工业应用中的适应性和效率,从而减少了为特定任务提供机器人所需的时间,成本和资源。此外,预计自动驾驶机器人操作的安全性和可靠性增强。这项研究旨在证明强化学习和数字双技术在转变工业机器人技术方面的潜力,从而为机器人应用提供了更具灵活,高效和智能的开发过程。本文对工业自动化的未来具有重要意义,为更适应性,高效和智能机器人系统提供了一种途径。通过利用AI和模拟技术的最新进步,它旨在为工业机器人技术的发展做出贡献,为更先进的工业解决方案铺平道路。