平行运动学操纵器(PKM)的特征是封闭的运动环,由于四肢平行排列,但也是由于四肢中存在运动环。此外,许多PKM都是由通过串行组合运动环构建的四肢构建的。这样的四肢称为混合动力,形成了特定类别的复杂四肢。设计和基于模型的控制需要精确的动态PKM模型,而无需简化模型。动力学建模需要在PKM的标准运动学建模中具有运动关系,在该模型中,仅计算了操纵器的正向和逆运动解(相关输入和输出运动)。这与杂种四肢的PKM更加涉及。在本文中采用模块化建模方法,分别处理四肢,并且动作的单个动态方程(EOM)随后将其组装到整体模型中。运动模型的关键是四肢内单个循环的约束分辨率。此局部约束分辨率是一般约束嵌入技术的特殊情况。提出的方法最终允许对一般PKM进行系统的建模。该方法用于IRSBOT-2,其中每个肢体包含两个独立的回路。©2022作者。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:通过使用基于平局的控制方法来解决机器人操纵器和自动驾驶汽车的多变量和非线性动力学的控制问题,该方法在连续循环中实现。这些机器人系统的状态空间模型分为两个子系统,它们之间在级联回路中连接。这些子系统中的每个子系统都可以独立看作是一个差异的系统,并且可以通过其动力学反转来执行其控制,就像输入输出输出线性化频率的情况下一样。第二个子系统的状态变量成为第一个子系统的虚拟控制输入。又将外源控制输入应用于第一个子系统。整个控制方法是在两个连续的循环中实现的,并且通过Lyapunov稳定性分析也证明了其全球稳定性属性。在两个案例研究中确定了控制方法的有效性:(a)控制3-DOF工业刚性链接机器人操纵器,(ii)控制3-DOF自主水下容器。