燃料电池可以通过氢和其他各种小有机分子的电化学氧化产生电力。由于其众多优势和应用,它们被广泛认为是有希望的未来能源。然而,诸如成本,耐用性和中毒易感性之类的重大挑战阻碍了其大规模的商业部署。然而,纳米技术在解决这些问题方面可以发挥重要作用。在过去的十年中,纳米结构材料导致了创新的发现,这有助于提高性能。纳米材料的不同特性,包括其高表面积和独特的尺寸效应,可以显着提高整体效率和细胞性能。纳米技术在开发燃料电池中使用的新型电解质方面也发挥了重要作用。本期特刊旨在介绍使用纳米材料或纳米结构来改善燃料电池性能的当前最新水平。欢迎原始研究文章和评论。
抽象物理储层计算(RC)代表一个计算框架,可利用可编程物质的信息处理能力,从而实现具有快速学习和低训练成本的能源有效神经形态硬件。尽管自组织的回忆网络已被证明是物理储层,能够从时空输入信号中提取相关特征,但多发纳米网络为计算实施的新型策略开辟了可能性。在这项工作中,我们报告了Materia RC的实施策略,并具有自组装的回忆网络。除了显示自组织纳米线网络的时空信息处理能力外,我们还通过模拟显示,新兴的集体动力学允许RC非常规实现,其中相同的电极可以用作储层输入和输出。通过在数字识别任务上比较不同的实施策略,模拟表明,非常规实现允许降低硬件复杂性,而无需限制计算能力,从而为在Materia计算中充分利用的新见解提供了对神经形态系统合理定义的全面优势。
ICE研究生牙科研究所和医院正在提供一门动手课程,重点是3D,特定于患者的,定制的嫁接,以重建吸收的肺泡脊。它是由著名的专家口腔外科医师Cemal Ucer领导的,他拥有30多年的治疗复杂病例的经验。生物医学工程师和材料科学家Stefan Berger博士协助他提供了这项短期课程。
- 等离子体过程 - 微电子应用的新技术和材料 - 连续培养基物理学的概念 - 量子现象,例如扩散,电子顺磁共振和量子密码学:基于半导体量子量量子量的纠缠状态,单个状态,单个状态和成对的状态。
正畸弓形材料在我们时代正在迅速变化。由于尚未找到理想的弓形线材料,因此评估包括工作范围在内的不同拱门的最有效特性及其对根部吸收的影响仍然是未满足的临床需求。不幸的是,大多数临床研究都缺乏对受试者和力量的标准化。先前未尝试针对不同正畸拱门的工作范围进行标准化的体内定量评估及其对根吸收的影响。这是第一个在标准化的口腔设计中定量比较和评估这些特性的研究。在这项工作中,将10个上门牙之一的一个样品随机选择,其中一个使用Cuniti电线接收25克式力的力,而控制侧则接收了与NITI相同数量的力。CBCT是在强制使用之前和之后进行的,以比较工作范围和根吸收。结果表明,组之间的工作范围有显着差异,该组偏向于Cuniti中的较大位移(p <0.05)。因此,这种新颖的方法可以为基于机械效应的标准测量值开辟新的途径,以实验正畸电线材料。,我们可以解决由于临床研究中缺乏标准化引起的正畸社区中目前存在的许多矛盾结果。因此,我们能够对两种临床有价值材料的工作范围进行可靠,准确的MEA验证。
2 Université Gustave- Eiffel, Laboratoire MSME UMR CNRS 8208, Université Paris-Est Marne-La-Vallée, Marne-La-Valle 8 F-77454, France 9 10 *Corresponding author: moussa.elidi@gmail.com 11 12 Abstract: This paper investigates the thermal management performance of a novel system using phase change material 13 (PCM) composite for锂离子电池的细胞尺度。开发了一个实验平台来研究锂离子细胞中的热现象14。该系统是根据热通量测量设计的。细胞嵌入PCM复合15材料中。将组件放在3D打印制造的铝制模具中。评估了添加金属16泡沫和强制对流的影响。结果表明,所提出的系统允许在最佳工作温度(25°C)周围保持Li-17离子电池的温度。还发现,添加铝泡沫可以对细胞进行更高的18效热管理。19 20关键字:相变材料(PCM),电池热管理系统(BTMS),金属泡沫,锂离子21 22命名法23
架构材料表现出与其几何形状直接相关的非常规性。由细长的元素组成时,结构材料可以通过细胞壁的屈曲或折断行为表现出大变形,表现出几何性非线性。这可以在具有不同属性的材料中创建一个与原始结构不同的新模式。在本文中,我们介绍了研究模式生成弹性不稳定性引起的架构材料的方法的回顾。我们首先在经典示例上审查相关研究:压缩下的六边形蜂窝。我们强调了它们在确定基本分叉现象及其对研究介质(单位细胞长度)模式变化方法的贡献方面的重要性。然后,我们详尽地回顾了现在使用的方法和工具,以研究受弹性不稳定性的此类材料的后构成行为。
将氢(H 2)存储为能量载体,需要开发用于提高传统储存溶液的效率和安全性,例如压缩气体(350-700 bar)和低温液体(20-30 K)。[1]固态氢存储是开发的一种替代方法,可以通过金属 - 水流中的化学键或通过物理吸附(物理吸附)到达多孔材料表面的物理吸附(物理吸附),以达到涉及较低储存压力的技术储存密度。[2]在固态方法中,物理吸附显示了更快的动力学,用于充电和放电和完全可逆性。[3,4]使用吸附剂进行氢存储需要低温温度(冷冻吸附),通常在液氮的沸点周围,即77 K,以实现与高压或液态氢罐可比的实用重量和大量能力。[5–11]
脱位密度。那些不同的方法不观察到相同类型的位错,即统计存储的位错(SSD)和/或几何必需的脱位(GND)。有些是直接测量技术,例如ECCI和TEM成像,而其他是非方向方法,即HR-EBSD和XRD测量。因此,提出了使用这四种技术在未变形和变形的双链钢上获得的测量值的定量比较。对于低变形,位错密度很小(成像方法相当性能,而XRD 1- 5×10 13 m - 2),测量值的不确定性水平高。HR-EBSD测量结果表明,结果与这些变形水平的其他方法非常吻合。对于较高的变形水平(上面的脱位密度),成像方法不再相关,因此1 - 3×10 14 m - 2
随着世界偏离建筑物的可持续性,由于能源需求的大量增加,建筑物中相变材料(PCM)的有效整合引起了很大的关注。PCM在增强建筑物的热性能方面的能力在很大程度上取决于与升级热物理,化学和环境PCM属性所需的增强技术直接链接所使用的封装技术。当前的研究回顾了涉及建筑物中PCM集成的近期文献,并突出了用于其适当的主动和被动掺入的不同封装技术。它还总结了封装之前属性增强的最新方法。的初步结果反映了使用五种不同的技术正确封装的重要性:直接混合,吸收,形状稳定,宏观封装和微囊化。宏观化PCM的商业化与其他技术相比,微/纳米封装技术仍然有限,并且需要进一步的研究是最有希望的。©2022作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。