α-葡萄糖苷酶(EC 3.2.1.20)是一种碳水化合物水解酶,广泛分布于小肠黏膜刷状缘,对糖基结构有重要影响。它能以内切或外切的方式水解各种糖化合物中的糖苷键,产生单糖、寡糖或糖胺聚糖,导致餐后血糖升高(Daub et al., 2020; Ismail et al., 2020; Attjioui et al., 2020)。餐后高血糖是导致2型糖尿病发生、发展的主要危险因素。抑制α-葡萄糖苷酶活性可减慢碳水化合物的消化,从而减少葡萄糖吸收入血,控制血糖水平。这种抑制被认为是治疗非胰岛素依赖型糖尿病的重要临床验证靶点(Ye et al., 2019; Khan et al., 2019; Syabana et al., 2021)。目前常用的α-葡萄糖苷酶抑制剂为阿卡波糖、伏格列波糖等生物合成或半生物合成药物,这些药物价格昂贵,且有不同程度的不良副作用(主要为腹部不适、恶心、呕吐等胃肠道反应(Wehmeier & Piepersberg, 2004; Smith et al., 2021)。需要开发安全、有效、具有临床获益的新型α-葡萄糖苷酶抑制剂。
变构是蛋白质的基本特性,它调节空间上相距遥远的位点之间的生化信息传递。在这里,我们报告了分子动力学 (MD) 模拟在发现 CRISPR-Cas9 中的变构通讯机制方面的关键作用,CRISPR-Cas9 是一种领先的基因组编辑机制,在医学和生物技术方面具有巨大的前景。MD 揭示了变构如何在 CRISPR-Cas9 功能的至少三个步骤中发挥作用:影响 DNA 识别、介导切割和干扰脱靶活性。发现激活协同 DNA 切割的变构通讯通过连接 HNH 和 RuvC 催化域的 L1/L2 环进行。这些“变构传感器”的识别启发了具有改进特异性的 Cas9 蛋白新变体的开发,为控制 CRISPR-Cas9 活性开辟了一条新途径。讨论的研究还强调了识别叶在催化 HNH 域的构象激活中的关键作用。具体而言,REC3 区域被发现通过感知 RNA:DNA 杂合体的形成来调节 HNH 的动态。REC3 的作用在 DNA 错配的情况下尤其重要。事实上,REC3 对在特定位置含有错配对的 RNA:DNA 杂合体的干扰导致 HNH 锁定在非活性“构象检查点”构象中,从而阻碍脱靶切割。总体而言,MD 模拟建立了 CRISPR-Cas9 变构现象的基本机制,有助于开发新的 CRISPR-Cas9 变体以改进基因组编辑的工程策略。
背景肺癌是全球癌症死亡的主要原因[1]。非小细胞肺癌(NSCLC)约占肺癌的85%[2]。目前,NSCLC的主要治疗方法是化疗、手术、放疗和靶向治疗[3],但五年生存率低至18%,且可能导致严重的副作用和耐药性[4,5]。因此,迫切需要开发治疗非小细胞肺癌的有效药物。地球总物种的25%由海洋物种组成。这些化合物中的许多具有特殊的生物活性和化学结构,可作为许多疾病的潜在药物[6,7]。这些海洋植物提取物大多已被证实具有抗癌[8,9]、抗炎[10,11]、抗病毒[12,13]等作用。从海洋植物提取物中提取的海洋药物受到越来越多的关注。褐藻是海洋中的一种大型藻类。岩藻固醇是褐藻乙醇提取物中的一种藻类植物固醇,已被证实具有多种生物活性,包括抗氧化[14-16]、抗炎[17-19]、抗癌[20]、抗菌[21]、抗抑郁[22]等。先前的研究报道了岩藻固醇在抗宫颈癌[20]、抗白血病[23]、抗结直肠癌[24]等方面的作用,但关于岩藻固醇治疗非小细胞肺癌的机制研究很少,其潜在的治疗靶点和相关途径尚未详细报道。
5. 采购流程 ................................................................................................................................ 14 5.1 招标 .............................................................................................................................. 14 5.2 投标结构 .............................................................................................................................. 14 5.3 选择 .............................................................................................................................. 15 5.3.1 选择方法 - 短缺 ............................................................................................. 15 5.3.2 选择方法 - 低效定价 ............................................................................. 16 5.3.3 授予通知 ............................................................................................................. 16 5.4 ERA 授予否决权 ............................................................................................................. 16 5.5 通知 ............................................................................................................................. 17 5.6 特别工作组设计决策 - 采购 ............................................................................................. 17
纺锤波是非快速眼动 (NREM) 睡眠期间普遍存在的振荡。越来越多的证据表明纺锤波可能与学习和记忆有关,其潜在机制现在开始被揭示。具体而言,纺锤波与树突活动增加和细胞内钙水平升高有关,这种情况有利于可塑性,并且与前馈抑制对尖峰输出的控制有关。在纺锤波期间,丘脑皮质网络对输入没有反应,从而可能防止与记忆相关的内部信息处理和外部信号之间的干扰。在系统层面,纺锤波与其他主要 NREM 振荡共同调节,包括海马尖波涟漪 (SWR) 和新皮质慢波,这两者都先前被证明与学习和记忆有关。在 SWR 时重新激活的顺序发生,随后是促进神经元可塑性的纺锤波,这可能是解释 NREM 睡眠依赖性记忆巩固的一种机制。本文是 Theo Murphy 会议议题“记忆重新激活:重播过去、现在和未来的事件”的一部分。
本文从量子信息论和扩展量子引力的角度对希格斯机制进行了新的重新解释。我们提出,希格斯场源自量子引力自由度的纠缠结构,自发对称性破坏是复杂性阈值现象。我们的框架将量子信息测量直接引入引力场方程,从而对时空作为一种源于量子信息的突发现象有了新的理解。我们开发了一种数学形式,将希格斯势和耦合与量子纠缠熵和复杂性联系起来,预测了标准模型物理的特定量子引力修正。我们的方法为层次问题和宇宙常数问题等长期存在的问题提供了潜在的解决方案,同时通过全息视角提出了粒子物理学和宇宙学之间的深层联系。本文概述了测试我们理论的实验方案,包括未来对撞机的精确希格斯测量、宇宙学观测和量子模拟。我们还探索了我们的框架的哲学含义,挑战了物理定律的传统观念和现实本身的本质。
后神经痛(PHN)是一种代表性的神经性疼痛类型,在分子水平上吸引了大量研究其诊断和治疗。有趣的是,这项基于脑脉管轴的研究提供了一种新的观点来解释PHN的机制。疼痛的过去神经解剖学和神经影像学研究表明,前额叶皮层,前扣带回皮层,杏仁核和大脑的其他区域可能在降低PHN的降低中起着至关重要的作用。PHN患者(例如乳杆菌)的主要细菌物种会产生短链脂肪酸,包括丁酸酯。证据表明,某些代谢产物(例如丁酸酯)的干扰与痛觉过敏的发展密切相关。此外,肠道中的色氨酸和5-HT充当神经递质,可调节神经性疼痛信号的下降传播。同时,肠神经系统通过迷走神经和其他途径建立了与中枢神经系统的密切联系。本综述旨在调查和阐明与PHN相关的分子机制,重点是PHN,肠道微生物群和相关代谢产物之间的相互作用,同时仔细检查其发病机理。
目的:本研究旨在根据药理网络策略确定姜黄素在牙周炎上的分子机制。方法:鉴定出姜黄素和差异表达基因的潜在治疗靶标。随后,我们提取了共同的分子并分析了它们。进行了代谢途径富集和基因本体分析,并推断了蛋白质E蛋白质相互作用网络。这些分析允许识别关键蛋白质。最后,用姜黄素对主密钥蛋白进行了分子对接。结果:我们的结果表明,在牙周炎中差异表达了55个基因,并且是姜黄素的潜在靶标。此外,我们观察到这些基因参与细胞运动和免疫反应,并且与趋化因子受体(CXCR)和酶活性有关,例如蛛网膜酸5-脂氧酶(Alox5)。我们识别了六个关键蛋白,IL1B,CXCL8,CD44,MMP2,EGFR和ITGAM;分子对接表明,这六种蛋白质自发与姜黄素结合。结论:这项研究的结果有助于我们了解牙周炎中姜黄素的分子机制。我们提出姜黄素会影响促炎细胞因子,ALOX5和细胞通过趋化因子受体迁移,并作用于细胞膜上。此外,我们确定了在这种机制中必不可少的六个关键蛋白,所有这些蛋白质都自发地与姜黄素结合。©2023日本口腔生物学协会。由Elsevier B.V.保留所有权利。
摇滚乐机制是机器人移动性的众所周知的设计,对于遍布坚固的地形的流浪者尤其有效。这项研究通过集成超声传感器,GPS模块和机械臂来提高自主性和多功能性,从而改善了传统的摇滚系统。该系统由Arduino Uno控制,并使用L298 2A电动机电路板由六个12V DC电动机提供动力,从而确保在充满挑战的环境中精确而可靠的运动。超声波传感器通过触发对象在50厘米以内时触发转弯来提供有效的障碍物检测。这是基于复杂AI的路径计划的更简单的选择。此外,GPS的集成增强了导航功能。机械臂允许与环境相互作用,从而实现了对象操纵和维修等任务。该项目旨在增强自主导航并改善基于传感器的障碍物,这是由实验方法的促进,包括在具有不同障碍距离的受控环境中使用超声波传感器测试漫游者的障碍物检测能力。在不同的地形上评估了流动站的导航,包括平坦的表面和不均匀的地形,以评估其移动性和稳定性。可选地,通过引导漫游者到达预定义的航位来测试GPS的精度,而在连续操作过程中监视功率效率以测量电池寿命和整体系统性能。结果表明。这项工作改善了在恶劣条件下的机器人自主权,并使用机械零件来减少农业,灾难响应机器人,自动矿业车辆,管道和基础设施检查,火山,深层洞穴和极端地形等领域的误差范围。
原核生物与侵入性移动遗传因素(MGE)之间的进化武器竞赛导致出现了无数的宿主防御系统,这些系统提供了免受入侵MGE的免疫力(1)。这些免疫机制包括限制性修饰(R-M),CRISPR-CAS,ARGONAUTE,CBASS,SHEDU,LAMASSU和WADJET系统(2-10)。防御系统通过限制水平基因转移(HGT)来消除入侵MGE和塑造微生物群落和生态系统的关键作用(11,12)。由于众多分子基因工程工具起源于原核基因组防御系统,因此了解原核生物免疫系统不仅对于揭开原核宿主相互作用的动力学至关重要,而且对于开发具有生物技术和药物中应用的分子工具的动力学。在重要的人类病原体弧菌霍乱中,两个DNA防御模块称为DDMABC和DDMDE合作以消除质粒,并被认为在第七大流行O1 El Tor(7pet)菌株的进化中起着关键作用(13)。ddmabc是一种类似拉马苏的防御系统,已证明质粒和噬菌体激活后会触发流产感染(7、13、14)。相比之下,DDMDE系统直接作用于小质粒,从而导致其降解(13)。结构建模表明DDME是一种核