选择性离子分离对水净化、储能和环境修复等各种行业都至关重要。在新兴技术中,氧化石墨烯 (GO) 功能化膜因其独特的结构和性能而表现出色且意义重大。GO 是石墨烯的衍生物,其表面具有含氧官能团,可用于控制离子传输并增强选择性。本文探讨了 GO 功能化膜在离子分离中的开发和应用,重点介绍了它们的优势、挑战和未来研究方向。
其天然膜中内源性蛋白质复合物的抽象成像可以揭示在洗涤剂溶解后损失的蛋白质 - 蛋白质相互作用。为了研究分枝杆菌氧化磷酸化机制中的相互作用,我们准备了来自smegmatis分枝杆菌的倒膜囊泡,并富含通过亲和力色谱含有兴趣复合物的囊泡。电子冷冻显微镜(冷冻-EM)表明,来自克雷布斯循环的酶(MQO)(MQO)与电子传输链复合物III 2 IV 2 IV 2(CIII 2 CIX 2)superComplex物理相关。对MQO:CIII 2 CIV 2相互作用的分析表明,CIII 2 CIV 2对于苹果酸驱动的,但不是NADH驱动的电子传输链活动和氧气消耗所必需的。此外,MQO与CIII 2 CIV 2的关联使电子从苹果酸到CIII 2 CIV 2与毫秒动力学转移。一起,这些发现表明了Krebs循环与呼吸之间的联系,该呼吸将电子沿着分枝杆菌电子传输链的单个分支引导。引言生物能是通过包括糖酵解,三羧酸或克雷布斯循环以及脂肪酸氧化的代谢途径从营养物质中提取的。在大多数生物体中,克雷布斯循环提供减少的烟酰胺腺苷二核苷酸(NADH),并琥珀酸酯添加到膜结合的电子传输链(ETC)配合物,以驱动跨膜质子质子运动力(PMF)的产生。PMF反过来为二磷酸腺苷(ADP)和无机磷酸盐(P I)合成三磷酸腺苷(ATP)提供了能量。nadh被ETC的复合物I氧化,将泛氨基酮降低为泛醇。在克雷布斯循环中,琥珀酸酯氧化为富马酸盐是必不可少的反应,但通过ETC的复合物II发生,这也将泛氨基酮降低到泛醇。然后将来自泛醇的电子依次转移至复合物III,细胞色素C(Cyt。c),复合物IV,然后氧气将其减少到水中。复合物I,III和IV对夫妇电子在整个膜上转移至质子易位,维持了为ATP合成的PMF。分枝杆菌等与典型的哺乳动物线粒体等不同的方式(在(Liang and Rubinstein,2023)中进行了多种方式)。首先,分枝杆菌等依赖于甲酸苯丙胺(MQ),而不是泛氨基酮。此外,与规范的etc,分枝杆菌等不同。在大多数分枝杆菌中,例如病原体分枝杆菌结核病和快速生长的腐生肉芽菌分枝杆菌Smegmatis,NADH:MQ氧化还原酶活性均由复合物I和一种或多种非腐蚀性泵送II型NADH脱氢酶(NDH-2S)催化。两种不同的酶SDH1和SDH2催化琥珀酸酯:MQ氧化还原酶活性。此外,结核分枝杆菌和Smegmatis均具有苹果酸:奎因酮氧化还原酶(MQO),将氧化剂氧化为Oxalo乙酸盐,这是KREBS循环的关键步骤,而将MQ降低到MQH 2(Harold等,202222)。在结核分枝杆菌中,除了苹果酸脱氢酶(MDH)之外,还发现了该MQO,它将电子从苹果酸转移到NAD +,而在Smegmatis M. smegmatis MQO中是唯一的苹果酸氧化酶(Harold等,2022)。c。也许最引人注目的是,分枝杆菌中MQH 2的氧化是由复合物III和IV(CIII 2 CIV 2)的超复合物催化的,并具有结合的细胞色素CC亚基,代替了可溶性细胞。MQH 2的氧化和将氧气还原为水还可以通过细胞色素BD复合物(在规范等中未发现)来实现,每种电子转移的质子比CIII 2 Civ 2易解的质子较少(Safiarian等,2021年)。
在植物中,NLR(核苷酸结合域和富含亮氨酸重复序列)蛋白通过形成聚集在质膜上的抗性小体来执行先天免疫。然而,NLR 抗性小体靶向其他细胞膜的程度尚不清楚。在这里,我们表明辅助 NLR NRG1 与多个细胞器膜结合以触发先天免疫。与其他辅助 NLR 相比,NRG1 和密切相关的 RPW8 样 NLR(CC R -NLR)具有延长的 N 端和独特的序列特征,使它们能够组装成比典型的卷曲螺旋 NLR(CC-NLR)抗性小体更长的结构。活化的 NRG1 通过其 N 端 RPW8 样结构域与单膜和双膜细胞器结合。我们的研究结果表明,植物 NLR 抗性小体在各种细胞膜位点聚集以激活免疫。
壳聚糖涂层,源自甲壳类动物壳废物,具有固有的生物相容性和生物降解性,使它们适合各种生物医学和环境应用,包括电化学生物透镜。其胺和羟基官能团为化学修饰提供了丰富的位点,以增强电荷转移动力学并提供出色的粘附,从而实现了稳健的电极涂层接口进行电分析。本研究探讨了静电驱动的化学相互作用和交联密度的作用,该密度源自不同壳聚糖(CS)和戊二醛(GA)浓度在这方面的作用。研究阴离子([Fe(CN)6] 3 - /4-),中性(FCDM 0 / +)和阳离子([RU(NH 3)6] 2 + /3 +)氧化还原探针突显了通过含有正气收费路径的壳聚糖链与Dft分析计算的壳聚糖链与壳聚糖链的影响。我们的研究揭示了适当的CH与GA比如何对交叉连接功效和结果电荷转移动力学具有较大的影响,这主要是由于电触电驱动的,这是由于电动驱动的负电荷的亚烯酰胺离子朝向带阳性充电的阳性电荷载荷的外壳粒的迁移而促进了多达20倍分析的预浓度。值得注意的是,表面工程方法允许[Fe(CN)6] 4-检测限制的两个数量级增强,从裸机的0.1 µm到适当的水凝胶修饰后,裸露的GCE降至0.2 nm。
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。
通过氧化石墨烯膜(GOM)的水转运,并且已经广泛研究了无机和有机溶质的排斥。然而,GO薄片的横向大小对膜性能的影响尚不清楚。在这里,我们研究了使用各种尺寸的薄片制造的GOM的水渗透和分离性能。用较大的薄片制备的膜显示出更高的水通量。我们的实验清楚地表明,GOM由薄片和空隙结构组成。蒙特卡洛模拟表明,通过空隙的水运输比通过GO膜中的薄片快于薄片。此外,对于用更大尺寸的Go片制备的膜而言,空隙更为主导,因此,对于较大的薄片膜而言,较高的水通量。此外,用大薄片制备的GOM有效地拒绝了98%以上的Geosmin(GSM)和2-甲基异位酚(MIB),具有高可重现性,稳定的水通量为1.49 LMH。我们的结果有助于更好地理解GOM的复杂结构,其中膜的排斥性能主要取决于层间空间,但水的运输受空隙的控制。我们的研究还证明了GOM在饮用水净化技术中的工业潜力。
Introduction of structural and functional properties of natural and synthetic biomembranes Fluid mosaic model Types of transport across biomembranes Intracellular membrane traffic Membranes of erythrocytes, intestinal mucosa, retinal cells and nerve cells Introduction to concepts of cellular signaling, receptors, transducers, primary and second messengers;信号扩增质膜作为传感器和放大器G蛋白偶联受体和激素通过蛋白质磷酸化和激酶的细胞信号传导TGFBeta;细胞因子受体; JAK/STAT途径带信号诱导蛋白质裂解的途径:Notch/Delta信号传导途径由泛素化控制:Wnt,HedgeHog和NF-κB癌症中涉及的信号传导途径癌症中的信号传导代谢功能障碍期间的信号导致肥胖,糖尿病等。信号的调节集成和控制信号
脂肽具有化学农药的有希望的替代品,用于植物生物防治目的。我们的研究通过检查它们与脂质膜的相互作用,探讨了脂肽表面蛋白(SRF)和富霉素(FGC)的独特植物生物防治活性。我们的研究表明,FGC具有直接的拮抗活性,对辣椒粉,并且在拟南芥中没有明显的免疫吸收活性,而SRF仅表现出刺激植物免疫力的能力。它还揭示了SRF和FGC对膜完整性和脂质堆积的影响。SRF主要影响膜的物理状态,而没有明显的膜通透性,而FGC透化膜而不会显着影响脂质堆积。从我们的结果中,我们可以提出脂肽的直接拮抗活性与它们透化脂质膜的能力有关,而刺激植物免疫的能力更可能是它们改变膜的机械性能的能力。我们的工作还探讨了膜脂质成分如何调节SRF和FGC的活动。固醇对两种脂肽的活性产生负面影响,而鞘脂会减轻对膜脂质填料的影响,但会增强膜泄漏。总而言之,我们的发现强调了考虑膜脂质填料和泄漏机制在预测脂肽的生物学作用中的重要性。它还阐明了膜组成与脂肽的有效性之间的复杂相互作用,从而提供了靶向生物控制剂设计的见解。
摘要:在碳纳米颗粒中,富勒烯被观察到是独特的零维空心分子。富勒烯具有较高的表面积,并且具有卓越的结构和物理特征(光学,电子,热,机械等)。以纳米复合材料的形式观察到了富勒烯的进步。在膜扇区发现了富勒烯纳米复合材料的应用。这篇尖端的评论文章基本上描述了富勒烯纳米复合膜对水修复的潜力。添加富勒烯纳米颗粒可以修改纳米复合膜的微观结构和物理特征,除了膜孔隙率,选择性,渗透性,水通量,脱脂性和其他重要特性的水补救性能。富勒烯纳米复合材料设计的变化导致盐,所需金属,有毒金属离子,微生物等之间的分离更大。对开创性富勒烯的膜材料的未来调查可能会克服高级应用程序的几种设计和性能挑战。
CO 2捕获,利用和存储(CCUS)技术是减轻温室气体排放的最有效的方法,吸引了全球相当大的关注。1,2 CCUS技术基于二氧化碳的捕获和分离。3要实现捕获和隔离二氧化碳的目的,膜分离已成为普遍的方法。该技术允许通过二氧化碳和膜之间的物理或化学相互作用选择性渗透二氧化碳。研究二氧化碳膜分离方法的研究围绕高效率膜的制备和获取。目前,经过广泛研究的CO 2分离膜包括无机,有机和新兴膜。无机膜主要由二氧化硅,沸石和石墨烯膜组成。有机膜包括纤维素,聚酰胺,多硫酮和聚醚膜。新兴膜包括复合材料,金属 - 有机框架(MOF),Zeolitic imidazo-late Framework(ZIF),碳分子筛(CMS),固有微孔(PIM)的聚合物(PIM)和促进的运输膜。具有低能消耗和高分离效率的显着优势,膜分离方法正在迅速出现,因为二氧化碳捕获和分离的全球前进技术。4