简介:目前,北极海洋生态系统正在目睹全球最快的身体变化,导致全球和底栖群落和食品网络结构发生转变,这与引入北方物种有关。凝胶状浮游生物或果冻鱼代表了一个特定的一组,其中几种北方物种容易经历显着的极点范围的扩张,并且在持续变化的过程中,北极的种群增加。从历史上看,果冻被认为是一种营养的死胡同,但是使用现代工具的越来越多的研究强调了它们作为海洋食品网中主要猎物的作用。在这项研究中,我们旨在验证果冻和其他后生动物作为北极夜间食品网络中的食物来源的作用,而骨髓资源有限。
在海洋生物多样性侵蚀的背景下,更好地了解过度捕捞的影响的需求脱颖而出。已经出现了新的遗传技术,例如环境DNA(EDNA)元法编码,并允许检测更广泛的物种,但仍未提供可靠的丰度估计以及随后的生态指标。在本文中,我们提出了MET Abarcoding和定量聚合酶链反应的组合,以获得每个物种EDNA分子的数量。这种方法用于内外六个无接收地中海海洋储备,以测量保护对鱼类物种的影响并建立新的指标。即使储量内部和外部的鱼类埃德纳分子的总数也没有差异,我们发现隐底鱼Edna与储量外部明显相关。基于这一观察结果,我们提出了一种新型的生态指标,即底栖鱼类埃德纳(Debra)(debra),利用EDNA的能力来检测经典调查通常会错过的隐底礁鱼。黛布拉内部储量的明显更高,反映出属于垂直于捕捞的层和塞氏鱼类的EDNA分子较高,因此它似乎是可靠的基于EDNA的人类压力指标。此外,黛布拉对栖息地或环境变化不敏感,并且不需要完整的EDNA序列参考数据库,因为如果可能和必要,它可以依赖于在属或家庭规模上分配的序列。
AurélienMaillet,AgnèsBouju-Albert,Steven Roblin,PaulineVaissié,SébastienLeuillet等。dna提取方法和采样方法对细菌群落的采样方法和采样方法,受16s rdna Metabarcoding在冷salmokeped salmon and Processing salmon and Processing surfaces中监测的细菌群落。食品微生物学,2021,95,pp.1-10。10.1016/j.fm.2020.103705。hal-03492706
要将以环境得出的元编码数据转换为社区矩阵进行生态分析,必须首先将序列聚集到操作分类单元(OTU)中。此任务对于包括大量带有不完整参考库的数据,包括大量的分类单元。OptimoTU提供了一种具有分类学意识的OTU聚类方法。它使用一组分类学识别的参考序列来选择最佳的遗传距离阈值,以将每个祖先分类群分组为最与后代分类单元最匹配的集群。然后,查询序列根据初步分类学标识和其祖先分类群的优化阈值聚类。该过程遵循分类学层次结构,从而将所有查询序列的所有查询序列完全分类为命名的分类学组以及占位符“ Pseudotaxa”,这些序列适合无法分类为相应等级的命名分类单元的序列。Optimutu聚类算法是作为R软件包实现的,在C ++中实现了速度的计算密集步骤,并合并了成对序列对齐的开源库库。距离也可以在外部计算,并且可以从UNIX管道中读取,从而允许大型数据集聚类,在该数据集中,整个距离矩阵将不方便地存储在内存中。Optimutu生物信息学管道包括一个完整的工作流程,用于配对端的Illumina测序数据,其中包含了质量过滤,DeNoising,Wratifact删除,分类学分类以及与Optimotu的OTU集群。开发了用于高性能计算簇的OptimoTU管道,并将其缩放到每个样品和数万个样本的数据集中。
生物时间序列观测对于更好地理解生态过程并确定人类对海洋的影响至关重要(Ducklow等,2009;BáLint等,2018; Takahashi等,2023)。有效进行了有效的海洋监测计划,有时使用数十年来收集的时间序列(Fontaine and Rynearson,2023年)。环境DNA(EDNA)从水样品中进行的元法编码越来越多地用于监测沿海生物多样性并检测随着时间的推移生物群落的变化(Deiner等,2017; Mathieu等,2020)。现在,通过使用EDNA METABARCODING或其他生物分子技术(https://obon-ocean.orgean.org/about/),建立了诸如海洋生物分子观测网络(OBON)之类的程序,以通过全球规模的合作和长期研究来增强海洋生物监测。为了确定在不同的时间尺度和环境条件上是否存在稳定的,复发的EDNA检测,对环境中的埃德娜(Edna)如何随物种物候(例如,生命阶段,生殖和代谢)和物理过程(例如水动力学,温度,uv)(seymour,uv)(Seymour,2019; des souza; de 22; eve and and and 2016; eve; et e and; et e and and;这种知识对于对长期EDNA数据趋势的有意义解释也至关重要。越来越多的研究报告了EDNA检测峰在短季节内的窗口中,并将这种模式归因于生物学因素(Laramie等,2015; Sigsgaard等,2017; Stoeckle等,2017; Handley等,2019; Handley等,2019; 2019; Troth et al。,2021; 2021; Sevellec et al。虽然有几项研究报道了用埃德娜(Edna)检测到的社区的显着年度变化(Closek等,2019; Laporte等,2021; di Capua等,2021; Carvalho等,2024),2024年),很少有短期变量(Kelly et al。,2018 al。等人,2024年)以及自然的短期可变性如何影响我们解释沿海EDNA数据以评估社区结构随时间变化的能力。水的时间系列edna metabarcoding提供了沿海北极生物监测的重要潜力。北极海洋正经历着由物理转变驱动的深刻气候和相关的生物变化,包括海冰熔化,海温升高和运输活动增加(Garcia-Soto等,2021; Murray等,2024)。尽管对北极生物群进行测量的后勤挑战,其中许多是地方性的,但已经记录了海洋社区的快速变化(Post等,2009; Koenigstein,2020)。Edna Metabarcoding跨多个营养水平检测生物的能力使其成为这个广阔而偏远地区的宝贵工具(Lacoursière-Roussel等,2018; Leduc等,2019; Sevellec等,Sevellec等,2021; Geraldi等,Geraldi等,2024)。这种非侵入性方法也是生物监测海洋社区的最伦理方法之一,使其在敏感的北极地区特别有价值。为了充分表征生物多样性中的长期闪烁,我们仍然需要理解北极地区海洋生物多样性的季节性和季节性季节性模式。在这里,我们比较了使用加拿大北极丘吉尔港作为案例研究的不同时间抽样策略,以监测埃德娜的后生社区,目的是
抽象动机:由于DNA测序的进步,现在常规地进行了环境微生物群落的分类学分析。确定这些群落在全球生物地球化学周期中的作用需要鉴定其代谢功能,例如氢氧化,还原和碳固定。这些功能可以直接从宏基因组学数据中推断出来,但是在许多环境应用中,MetabarCoding仍然是选择的方法。从元法编码数据及其整合到地球化学循环的粗粒表示中,代谢功能的重建仍然是当今有效的生物信息学问题。结果:我们开发了一条称为Tabigecy的管道,该管道利用分类学官员来预测构成生物地球化学周期的代谢功能。在第一个步骤中,Tabigecy使用该工具Esmecata从输入液位中预测共识蛋白质组。为了优化此过程,我们生成了一个预先计算的数据库,其中包含来自Uniprot的2,404个分类单元的信息。使用BigeCyhmm搜索了共有的蛋白质组织,BigeCyhmm是一个新开发的Python软件包,依靠隐藏的Markov模型来识别参与生物地球化学周期代谢功能的关键酶。然后将代谢功能投射到周期的粗粒表示上。我们将塔博基(Tabigecy)应用于两个盐洞数据集,并通过对样品进行的微生物活性和水力化学测量结果验证了其预测。结果突出了研究微生物群落对地理化学过程的影响的方法。关键字:微生物群落,生物地球化学周期,代谢功能,分类学官员
fi g u r e 1基于VAE方法的图表应用于EDNA数据(VAESEQ)。该模型由一个自动编码器(AE)和一个变异自动编码器(VAE)组成。AE将每个MOTU的遗传序列信息与每个样品中每个MOTU的存在/不存在相结合,以生成第一个潜在编码Z AE。然后将此信息传递给一个编码层的VAE。因此,在每次迭代中,VAE接收到一个样品中每个MOTU检测到的序列的输入,并且嵌入Z AE的自动编码器。vae处理两个输入,并将样品的维度降低到二维潜在空间z vae。在z vae中,我们找到了所有数据点的2D表示(图S3A,b)。在解码部分中,VAE重建了两个输入,以相应地优化网络。
您可以将本文档中包含的信息和图像用于非商业,个人或教育目的,前提是您(1)不修改此类信息,并且(2)包括适当的引用。如果将材料用于其他目的,则必须在作者使用之前获得作者使用受版权保护的材料的书面许可。
Abell, R.、Thieme, M.L.、Revenga, C.、Bryer, M.、Kottelat, M.、Bogutskaya, N. 等人。 (2008)。世界淡水生态区域:淡水生物多样性保护的生物地理单元新地图。生物科学, 58(5), 403 – 414。https://doi.org/10.1641/B580507 Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E. 等人。 (2021 年)。科学家就淡水生物多样性危机向人类发出警告。 Ambio,50(1),85–94。https://doi. org/10.1007/s13280-020-01318-8 Allard, L.、Popée, M.、Vigouroux, R. 和 Brosse, S. (2016 年)。减少冲击伐木和小规模采矿干扰对新热带溪流鱼类群落的影响。水生科学, 78(2), 315 – 325。https://doi. org/10.1007/s00027-015-0433-4 Allard, L.、Brosse, S.、Covain, R.、Gozlan, R.、Bail, P.-Y.L.、Melki, F. 等人。 (2017)。法国濒危物种红色名录 - 第章来自圭亚那的淡水鱼。法国巴黎:IUCN 法国委员会出版物,MNHN & Hydreco,第 154 页。 115. Baker, C. S.、Steel, D.、Nieukirk, S. 和 Klinck, H. (2018)。鲸鱼尾流中的环境 DNA (eDNA):用于检测和物种识别的液滴数字 PCR。 Frontiers in Marine Science, 5, 133。https://doi.org/10.3389/fmars.2018.00133 Baker, C. S., Claridge, D., Dunn, C., Fetherston, T., Baker, D. N., Klinck, H. et al. (2023)。通过液滴数字 PCR 进行定量分析,通过对布氏喙鲸的环境 (e)DNA 进行宏条形码识别,并借助声学阵列进行辅助定位。 PLoS ONE,18(9),e0291187。 https://doi.org/10.1371/journal。 pose.0291187 Barnes,M.A.和Turner,C.R.(2016)。环境 DNA 的生态学及其对保护遗传学的影响。保护遗传学, 17(1), 1 – 17。https://doi.org/10.1007/s10592-015-0775-4 Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Dejean, T., Griffiths, R. A. 等人。 (2015)。利用 eDNA 制定国家公民科学
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。