Abell, R.、Thieme, M.L.、Revenga, C.、Bryer, M.、Kottelat, M.、Bogutskaya, N. 等人。 (2008)。世界淡水生态区域:淡水生物多样性保护的生物地理单元新地图。生物科学, 58(5), 403 – 414。https://doi.org/10.1641/B580507 Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E. 等人。 (2021 年)。科学家就淡水生物多样性危机向人类发出警告。 Ambio,50(1),85–94。https://doi. org/10.1007/s13280-020-01318-8 Allard, L.、Popée, M.、Vigouroux, R. 和 Brosse, S. (2016 年)。减少冲击伐木和小规模采矿干扰对新热带溪流鱼类群落的影响。水生科学, 78(2), 315 – 325。https://doi. org/10.1007/s00027-015-0433-4 Allard, L.、Brosse, S.、Covain, R.、Gozlan, R.、Bail, P.-Y.L.、Melki, F. 等人。 (2017)。法国濒危物种红色名录 - 第章来自圭亚那的淡水鱼。法国巴黎:IUCN 法国委员会出版物,MNHN & Hydreco,第 154 页。 115. Baker, C. S.、Steel, D.、Nieukirk, S. 和 Klinck, H. (2018)。鲸鱼尾流中的环境 DNA (eDNA):用于检测和物种识别的液滴数字 PCR。 Frontiers in Marine Science, 5, 133。https://doi.org/10.3389/fmars.2018.00133 Baker, C. S., Claridge, D., Dunn, C., Fetherston, T., Baker, D. N., Klinck, H. et al. (2023)。通过液滴数字 PCR 进行定量分析,通过对布氏喙鲸的环境 (e)DNA 进行宏条形码识别,并借助声学阵列进行辅助定位。 PLoS ONE,18(9),e0291187。 https://doi.org/10.1371/journal。 pose.0291187 Barnes,M.A.和Turner,C.R.(2016)。环境 DNA 的生态学及其对保护遗传学的影响。保护遗传学, 17(1), 1 – 17。https://doi.org/10.1007/s10592-015-0775-4 Biggs, J., Ewald, N., Valentini, A., Gaboriaud, C., Dejean, T., Griffiths, R. A. 等人。 (2015)。利用 eDNA 制定国家公民科学
全球生物多样性正以惊人的速度下降,迫切需要进行大规模监测以了解其变化及其驱动因素。虽然传统的物种分类学鉴定耗时耗力,但与基于 DNA 的方法相结合可以扩大监测活动的规模,以实现更大的空间覆盖范围和增加采样工作量。但是,当需要估计每个物种的个体数量和/或生物量时,基于 DNA 的方法仍然存在挑战。已有多种方法学进展可提高 DNA 宏条形码用于丰度分析的潜力,但仍需要进一步评估。在这里,我们讨论了实验室以及一些生物信息学对 DNA 宏条形码工作流程的调整,以了解它们从节肢动物群落样本中估计物种丰度的潜力。我们的综述包括标本拍照等实验室前处理方法、使用掺入 DNA 作为内标等实验室方法以及校正因子等生物信息学进展。我们得出的结论是,标本摄影与 DNA 条形码相结合目前最有可能实现对每个物种个体数量和生物量估计的估计,但诸如峰值和校正因子等方法是有希望进一步研究的方法。
fi g u r e 2多价协议的品种。仅通过组合在此处可视化的双向品种来可视化仅可视化双向算法协议,三向和四向算法协议测试也可以进行。(a)分配和聚类算法之间的协议。显示了三个群集,其中每个等级的组件ASV的比例分配给每个分类单元,而大型蓝色圆圈中的分类学分配代表了所有组件ASV收到的分类。例如,cluster1包含三个ASV,均分配给了节肢动物和玛拉科斯特拉卡类,但它们被分配给不同的顺序(decapoda和euphausiaceae)。因此,一种保守的方法是将群集分配给Malacostraca级,但在较低的排名中将其分配得不明。(b)聚类算法之间的一致性。显示了两个替代聚类输出(红色和蓝色椭圆形,包含由黑条表示的ASV)。例如,蓝色cluster1包含两个红色簇,每个簇包含三个和四个ASV。在这种情况下,聚类算法之间的一致性和分歧提供了其他信息,以询问特定感兴趣的特定簇之间的内部结构或潜在关系。(c)分配方法之间的协议。显示了两个ASV,每个ASV都从IDTAXA和BLAST接收分配。ASV1在较低的等级(家庭和属)中获得不同的作业,而ASV2在所有等级中都从两种算法中接收相同的作业。因此,一种保守的方法将把ASV1分配给Charchariniformes的订单,但在较低的等级中将其分配给了。
a: Naturalis Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands 10 b: Department of Environmental Biology, Institute of Environmental Sciences (CML), Leiden University, 11 Einsteinweg 2, 2333 CC Leiden, The Netherlands 12 c:National Research Council of Italy (CNR), Water Research Institute (IRSA), Largo Tonolli 50,28922,Verbania 13意大利Pallanza,14 D:塞浦路斯海洋和海事研究所,CMMI House,CMMI House,CMMI House,Vasileos Pavlou Square,6023,Larnaca,Larnaca,Larnaca,Larnaca,Cyprus 15 E:化学工程系:塞浦路斯大学,塞浦路斯大学,塞浦路斯大学,塞浦路斯大学,3036年3036,Limassol,塞浦路斯,塞普鲁斯16 F:萨萨里(Sassari),通过维也纳2,07100意大利萨萨里(Sassari)17 g:国家生物多样性未来中心(NBFC),皮亚齐扎·玛丽娜(Piaziza Marina)61,90133意大利巴勒莫(90133意大利)18 H:生物多样性,生态学和进化系,co/joséniosprid,c/joséniosprids coptridense de Madrid spriidence de Madeanio sprid sprids spernio and novrid Antid andrid,28040404040。20 I:瑞典自然历史博物馆,动物学系,POB 50007,SE-104 05斯德哥尔摩,瑞典21 J:生物学,地质学和环境科学系。田纳西大学查塔努加大学。电子邮件:jan.macher@naturalis.nl 33615 22 McCallie Ave, Chattanooga, TN, 37403, USA 23 k:Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, 24 Videnska 1083, 142 20 Prague, Czech Republic 25 l:Department of Ecology, Charles University, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic 26 m:Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark 27 n:Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 213/D, 41125 Modena, 28 Italy 29 o:Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH 30 Amsterdam,荷兰31 32 *通讯作者。
作者格式,未经同行评审的文件发布于2023年7月7日。doi:https://doi.org/10.3897/arphapreprints.e109709
抽象是一种有效的方法,用于快速分析物种关系,物种组成,以及与性状数据库(社区生物多样性的功能元素)结合使用,是DNA metabarcoding。传统的评估物种丰富度和丰度的方法受到分类识别的限制,可能会损害或破坏栖息地,并可能依靠使得难以找到小型或难以捉摸的物种的技术,从而对整个社区进行了估计。通过使用高通量测序(HTS)技术,该技术可以对与环境和社区样本收集的DNA条形码相关的数据进行顺序和提取数据。一种称为Metabarcoding的不断发展的技术利用了大量的DNA条形码序列和改进的DNA测序技术的吞吐量。脊椎动物饮食的分析是DNA元法编码最早的应用之一,该技术对于理解植物 - 授粉关系仍然有效。DNA研究的范围受到环境DNA降解的限制,尤其是在温暖的热带地区,经常仅存在很少的遗传物质残余物。DNA metabarcoding是一种仍在开发中的新技术。随着技术的发展和协议变得更加标准化,可以预期该方法将持续一段时间。元法编码预计将成为监测生态学和全球保护研究的关键工具,因为它得到了改进和更频繁的使用。关键字DNA元法编码,生物多样性,条形码,EDNA,METABARCODING,HTS
环境DNA(EDNA)元法编码的进步彻底改变了我们评估生物多样性的能力,尤其是对于隐性或研究较少的生物,例如真菌,细菌和微依脊椎动物。尽管具有成本效益,但由于处理和分析EDNA样品所需的大量时间和资源,对抽样站点的空间选择仍然是一个关键的挑战。这项研究引入了生物多样性数字双胞胎原型,旨在优化EDNA采样位置的选择和优先级。利用可用的EDNA数据并集成用户定义的标准,该数字双胞胎在选择未来的采样站点时有助于明智的决策。通过开发相关的数据格式工具,我们还促进了DNA元编码数据的可访问性和实用性,以进行更广泛的保护工作。该原型将根据未来样本的估计互补性提供直观的界面来提供多个最终用户,从研究人员和监视计划到商业企业。该原型提供了可扩展的生物多样性采样方法。最终,该工具旨在通过有效的EDNA采样来完善我们对全球生物多样性模式的理解,并支持针对性的保护策略。
牛津纳米孔 Flongle 简介:本方案描述了我们使用纳米孔 Flongle 进行 DNA 元条形码编码的方法。它涵盖了纳米孔测序和 DNA 元条形码编码的简要背景、我们为元条形码编码设计的引物、我们的 PCR 方法、纳米孔文库制备和样品加载以及使用 Ontbarcoder 应用程序进行的数据分析。牛津纳米孔测序:牛津纳米孔测序仪 1 是第三代实时长读测序仪,越来越受欢迎。它相对便宜(起价 1000 美元),小巧便携,可生成长读长(1000 个碱基对),并实时测序,这意味着您可以在测序反应进行时下载和分析序列数据。纳米孔测序的工作原理是检测 DNA 穿过纳米孔时流动池上纳米孔中电荷的变化。DNA 核苷酸(A、C、T、G)在穿过纳米孔时会以不同的方式改变电荷,因此机器可以根据孔电荷的变化确定 DNA 链的序列。 Flongle:纳米孔流动槽有两种类型,常规流动槽适用于大型项目(成本约为 1,000 美元),Flongle 2 流动槽适用于小型实验(每个流动槽成本约为 90 美元)。虽然 Flongle 流动槽成本不算太高,但对单个样本进行测序还是太贵了。常规 Sanger 测序每个样本的成本为 2-6 美元!因此,必须将样本汇集在一起进行测序,也就是说,将几个或多个样本一起装入单个 Flongle 流动槽中。为了稍后分离样本,需要用条形码标记样本,以便识别它们。DNA 宏条形码:DNA 条形码是使用参考序列来识别物种。对指定的条形码基因(传统上是线粒体 COI 基因)进行测序,然后将获得的序列与条形码序列数据库进行比较。DNA 宏条形码是指在单个测序反应中汇集许多个体,以使用 DNA 条形码识别物种。 Nanopore 测序仪可用于 DNA 宏条形码,并在一次测序运行中生成多个样本的序列。我们实验室中的 DNA 宏条形码:在我们的实验室中,我们使用带有 Flongle 流动槽的 Nanopore 测序仪进行 DNA 宏条形码。使用苯酚-氯仿 3 、Qiagen 4 甚至 Chelex 5(昆虫)方案提取 DNA。然后我们进行 PCR 以扩增 COI DNA 条形码基因(也可以使用其他基因,如 12S 和 16S 6 ),在琼脂糖凝胶上运行产物以查看如何
摘要:由于宿主之间观察到接触的困难,我们对野生动植物多层病原体传播系统的理解通常是不完整的。了解这些相互作用对于防止疾病引起的野生动植物的下降至关重要。高通量测序技术的扩散为更好地探索这些隐秘相互作用提供了新的机会。多层寄生虫Parelaphaphoptrongylus tenuis是一些驼鹿(Alces Alces)人口的主要死亡原因,受到中西部和加拿大东北部和东北地区局部灭绝的威胁。驼鹿合同P. tenuis通过食用受感染的腹足动物中间体宿主,但对哪种腹足动物的驼鹿消耗量知之甚少。为了获得更多的见解,我们在258种地理参与和时间分层的驼鹿粪便样本上使用了一种遗传元法编码方法,该方法是从美国中北部人口下降的2017年5月至2017年10月收集的。我们在五个阳性样品中检测到了三种腹足动物的驼鹿消耗。其中两个(点细分和螺旋瘤SP。)已对托管假单胞菌的能力进行了最小的研究,而一位(Zonitoides arboreus)是一位有记录良好的宿主。驼鹿消耗本文记录的腹足动物发生在6月和9月。我们的发现证明,驼鹿消耗了已知被P. tenuis感染的腹足动物物种,并证明粪便metabarcoding可以为多种病原体传播系统的宿主之间的相互作用提供新的见解。确定和提高了测试敏感性后,这些方法也可以扩展以记录其他多次疾病系统中的重要相互作用。关键词:脑虫,腹足动物,脑膜蠕虫,明尼苏达州,分子流行病学,驼鹿,溢出传播。
ATOPLEX METABARCODING用户手册为MGI定制产品平台上的测序进行多个PCR扩增提供了指导。荟萃编码通常用于物种分类,丰度分析和各种生物样品的比较研究。The barcodes frequently used for biodiversity assessment include prokaryotic 16S ribosomal DNA (for bacteria and archaea), eukaryotic 18S ribosomal DNA (for diverse eukaryotes such as plants, protists, and fungi), eukaryotic ITS ribosomal DNA (for fungi), mitochondrial COI gene (for a wide range of eukaryotes including animals and生物)和线粒体12S DNA(专门针对鱼)。This user manual is only applicable to the use of the library construction products described in this document: ATOPlex 16S V3V4 rDNA Primer Pool, ATOPlex 18SV4 rDNA Primer Pool, ATOPlex ITS1 rDNA Primer Pool, ATOPlex COI mtDNA Primer Pool, ATOPlex Ac12S mtDNA Primer Pool, ATOPlex MiFish Primer Pool, and ATOPlex DNA Dual Barcode Library Preparation测序套件。