近年来,人们对使用金属纳米结构来控制纳米级的温度越来越感兴趣。在其等离子共振下照明下,金属纳米颗粒具有增强的光吸收,将其变成理想的纳米源热源,可通过光远程控制。这个简单的方案是基于纳米科学社区中众多积极的研究活动和应用。在这里,我们回顾了这种热量等法的所谓领域的最新进展。我们首先描述了在连续或脉冲照明下的金属纳米颗粒中热产生的物理学。然后,我们提出了已经开发出来的实验和理论方法,这些方法是为了进一步理解和设计纳米级的等离子辅助加热过程。最后,我们回顾了一些基于金纳米颗粒产生的热量,即光热癌疗法,纳米疗法,药物输送,光热成像,蛋白质跟踪,光声成像,纳米化学化学和光化合物。
多功能材料已被确定为开发低功耗技术的关键组成部分。在这方面,过渡金属氧化物已成为理论和实验研究的新焦点,因为它们具有可调的铁电性、磁性、巨磁电阻、多铁性和超导性,这些特性源于结构、电子和磁相关性的微妙相互作用 [1, 2]。如果异质结构中的至少一种组成化合物是过渡金属氧化物钙钛矿,也可以赋予其新功能。[3–6] 在宽带隙绝缘体 LaAlO 3 和 SrTiO 3 (STO) 的界面附近证实了二维金属态 (2DES),它还具有超导性 [7–9] 和大范围可调的 Rashba 自旋轨道耦合 [10],为自旋电子学创造了良好的机会 [11, 12]。此外,对几种ATiO 3 钙钛矿(A=Sr、Ba、Ca)和KTaO 3 的裸露或封盖表面的ARPES测量发现了受限的2DES[13–15];对于STO,提出了磁性迹象,并做出了拓扑状态的理论预测[16–18]。对于先验非极性材料,例如STO和CaTiO 3 (CTO),实验证据表明位于表面附近的氧空位提供了形成金属态的导带载流子[19–22]。块体CTO是绝缘体,带隙为3.5 eV[23]。低于1300 K,氧八面体的大角度旋转和倾斜迫使CTO变为正交结构[24],具有旋转角(φ=9°)和倾斜角(θ=12°)[25]。缺氧的 UHV 清洁 (001) 表面的 ARPES [21, 22] 光谱揭示了低于费米能级 EF 约 1.3 eV 的带内态和三个占据能带,构成 2DES。第一和第三个能带在布里渊区 (BZ) 中心 Γ 附近具有主导的 d xy 特征。第二个能带为
标题:使用原子探针断层扫描摘要在材料中看到氢:金属材料中的氢存在可能导致灾难性的早期裂缝,称为氢含糖。观察氢及其在微观结构中相关的影响一直是一个巨大的挑战,它限制了解决该问题的解决方案。为此,我们的研究小组开发了一种特殊的工具,即低温原子探针断层扫描(Cryo-Apt),用于氢图,并将其与微力方法结合使用,以研究钢中的氢化含量。我们的努力为破译钢中的氢气诱捕和拥抱机制提供了新的见解,从而促进了钢微结构的发展,钢微结构具有良好的抵抗力。bio:Yi-Sheng(Eason)Chen博士是Nanyang助理教授(NAP)和新加坡国家研究基金会(NRF)材料科学与工程学院,Nanyang Technological University,新加坡(NTU)。他的研究重点是材料表征,冶金和氢技术。专门使用高级显微镜技术,例如原子探针断层扫描(APT)和电子显微镜来开发高级金属材料的结构属性处理关系。从这些努力中获得的见解将有助于更深入地了解材料行为,为发展下一代高性能材料的发展铺平道路。他是Sinica学术界物理研究所的前研究助理。 参考:[1] Y.-S. Chen等。他是Sinica学术界物理研究所的前研究助理。参考:[1] Y.-S. Chen等。“金属中的氢诱捕和覆盖 - 综述。”国际氢能杂志(印刷中)(2024年)。https://www.sciendirect.com/science/article/pii/s036031992401332 6
了解自旋波(SW)阻尼以及如何将其控制到能够放大SW介导的信号的点是使所设想的宏伟技术实现的关键要求之一。甚至广泛使用的磁性绝缘子在其大块中具有低磁化阻尼(例如Yttrium Iron Garnet),由于在最近的实验中观察到的,由于与金属层与金属层的不可避免接触,因此SW阻尼增加了100倍。,adv。量子技术。4,2100094(2021)]以空间解析的方式映射SW阻尼。在这里,我们使用扩展的Landau-lifshitz-gilbert方程对波矢量依赖性的SW阻尼提供了微观和严格的理解,并具有非局部阻尼张量,而不是常规的本地标量尺吉尔伯特damp,从Schwinger-keldysh norther-keldysh nortakys damper中衍生而成。在这张照片中,非局部磁化阻尼的起源以及诱导的波载体依赖性SW阻尼是磁绝缘子的局部磁矩与来自三种不同类型的金属叠层器的传导电子的局部磁矩的相互作用:正常,重型和altermagnetic。由于后两种情况下传导电子的自旋分解能量散布引起的,非局部阻尼在自旋和空间中是各向异性的,并且与正常金属覆盖物的使用相比,可以通过更改两层的相对方向来大大降低。
TiAl金属间化合物可通过形变诱导相变显著提高材料性能,但对TiAl金属间化合物塑性变形机制尚缺乏足够的认识。本文以双晶结构TiAl合金中的γ − TiAl和α 2 − Ti 3 Al为对象,在纳米尺度上研究了TiAl金属间化合物的位错滑移和孪生变形机制。利用应用扫描电子显微镜(SEM)和电子背散射衍射对变形内部组织进行表征和分析,采用Schmidt因子µ分析技术计算滑移能垒,研究了临界剪应力下γ − TiAl和α 2 − Ti 3 Al相的孪生变形机制以及γ − TiAl和α 2 − Ti 3 Al相的位错滑移动力学。两种双晶结构 γ − TiAl 和 α 2 − Ti 3 Al 的 TiAl 金属间化合物所需的临界剪应力分别为 92 和 108 MPa,孪生萌生时锥形 < a > 和基底 < a > 滑移所需的临界剪应力次之。孪生萌生时锥形 < c + a > 滑移所需的临界剪应力最高,且两者在数值上相等
引导和自由空间波之间的转换对于实现综合的Terahertz(THZ)通信和信号过程至关重要。在此,提出了一种双向转换机制,用于桥接二维(2D)引导波和自由空间波,这是通过具有元孔(MWMH)的金属波导的波浪操作来证明的。与一维引导波和自由空间波之间的常规转换相比,在提出的双向转换过程中,元孔可以任意操纵较高尺寸的THZ波相位,从而实现更强的光束操作能力和更高的增益。用作传输天线时,MWMH表现出出色的性能,即高增益(33.3 DBI),高辐射效率(90%)和柔性束操作。当MWMH被反向用作接收天线以获得2D引导波的焦点时,它可获得27 dB的增益,而重点效率为50.4%。传输和接收天线的测量结果与仿真结果非常吻合。所提出的双向转换机制促进了THZ集成光子设备的发展,并有望在第六代移动通信,雷达检测和无损测试中应用。
* 通讯作者:陈洪生、李世龙、钱浩良,浙江大学信息与电子工程学院量子信息交叉学科中心、现代光学仪器国家重点实验室,杭州 310027,浙江大学;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,浙江大学;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,浙江大学,电子邮箱:hansomchen@zju.edu.cn (H. Chen)、shilong.li@zju.edu.cn (S. Li)、haoliangqian@zju.edu.cn (H. Qian)。https://orcid.org/0000-0002-5735-9781 (H. Chen)。 https://orcid.org/0000-0003-4200-9479 (H. Qian) 王海腾、牛俊如、陈巧璐、邵华和杨逸浩,浙江大学信息与电子工程学院现代光学仪器国家重点实验室量子信息交叉学科中心,杭州 310027,中国;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,中国;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,中国 赵思涵,浙江大学物理学院量子信息交叉学科中心、硅与先进半导体材料国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310058,中国。 https://orcid.org/0000-0003-2162-734X
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x