从超材料到元面积,光学纳米结构已被广泛研究,以提高新型和高效率的功能。除了复合材料的内政特性外,丰富的功能还可以源自尼古拉斯的司法设计,该设计比传统的批量操作元素更具出色和高度集成的光学设备。同时,可以将大量的经典域中光的操纵abilites置于量子域。在这篇综述中,我们重点介绍了基于元信息的量子光学量的最新开发,范围从量子质量,产生,操纵和量子光的应用到量子效果工程等。最后,提出了一些有前途的量子光学途径。
摘要。光学超表面已成为光子学的一项突破性技术,它利用超薄表面纳米结构在亚波长尺度上对光 - 物质相互作用提供无与伦比的控制,从而催生了平面光学。虽然大多数已报道的光学超表面都是静态的,具有由制造过程中设定的成分和配置决定的明确定义的光学响应,但通过施加热、电或光刺激具有可重构功能的动态光学超表面的需求越来越大,并成为研究和开发的前沿。在各种类型的动态控制超表面中,电可调光学超表面因其响应时间快、功耗低和与现有电子控制系统兼容而显示出巨大的前景,为通过电调制动态可调光 - 物质相互作用提供了独特的可能性。在这里,我们全面概述了在这个快速发展的领域中探索的最先进的设计方法和技术。我们的工作深入研究了电调制的基本原理、实现可调性的各种材料和机制以及主动光场操纵的代表性应用,包括光振幅和相位调制器、可调偏振光学器件和波长滤波器以及动态波整形光学器件(包括全息图和显示器)。本综述以我们对电触发光学超表面未来发展的看法结束。
摘要 光学超表面是平面纳米结构器件,具有工业吸引力,部分原因是它们利用高通量微电子制造技术来实现。因此,开发能够平衡高效波前响应实现和器件可制造性的设计范例至关重要。我们引入了一种基于梯度的自由曲面超表面设计框架,其中纳米级元素明确限制为基本形状、几乎均匀的特征尺寸和极低的纵横比。尽管超表面几何特征看似均匀,但这些器件能够利用非局部近场光耦合实现超越传统设计方法的高效和极端波前散射。利用这种方法,我们设计了简单的高数值孔径器件,例如能够实现衍射极限聚焦的光束偏转器和大面积超透镜。我们预计这些概念可以促进超表面的设计和集成到单片光学系统中。
非线性介电元面积提供了一种有希望的方法来控制和操纵纳米级的频率转换过程,从而促进了基础研究的进步以及在光子学,启动和感应中的新实践应用的发展。在这里,我们采用了由中心的非定形硅制成的对称性交叉的元面积,以共同增强二阶和三阶非线性光学响应。在连续和引导模式的共振中利用光学准结合状态的丰富物理学,我们通过严格的数值计算全面研究表面和批量效应对第二谐波产生(SHG)的相对贡献,以及对来自meta-atoms的第三谐波发电(THG)的大量贡献。接下来,我们在实验上实现了具有高质量因素的光学共振,这极大地增强了轻度相互作用,导致SHG增强功能约为550倍,THG增加了近5000倍。观察到理论预测与实验测量之间的良好一致性。为了对所研究的非线性光学过程的物理学进行更深入的见解,我们进一步研究了非线性发射与跨表面的结构不对称之间的关系,并揭示了由线性敏锐的共振产生的产生的谐波信号非常依赖于元元素的非元元素。我们的工作提出了一项富有成果的策略,以增强谐波产生并有效地控制全dielectric Metasurfaces的不同顺序谐波,从而能够发展有效的有效的主动光子Nan-osevices。
图4:模拟的角度分散。(a)在1570 nm的波长(电偶极共振模式)波长下,元表面的元表面透射率。(b)在1400 nm(磁模式)波长下具有相同的透射率。(c)磁模式的(b)子图中沿虚线的传输值以及数据的高斯拟合值。
超表面应用数量的不断增长以及其制造和特性的快速发展[30]促使人们开发出精确分析和设计超表面的方法。虽然全波数值解始终是一种选择,但分析工具可能更具吸引力,因为它们有助于设计并提供有关超表面底层物理的宝贵见解。对于每个单位晶胞由单个散射体组成的周期性超表面,即我们在此重点讨论的超表面类型(图1),有几种用于此目的的技术。首先,开发了可理解的超表面和超材料电路模型[31–33],这些模型易于在工业中使用,尤其是对于微波应用。第二种方法遵循均质化原理。它旨在用具有相同表面磁化率的表面替换有问题的超表面。[34–36]尽管这些方法对组件设计非常有帮助,但它们不足以描述所研究结构的内部物理特性,例如组成粒子的相互作用。此外,电路建模和均质化方法有时会涉及一些假设,这些假设会以牺牲准确性为代价来简化所研究的问题。第三种方法更多地来自“第一性原理”,旨在通过求和其组成粒子的响应,自下而上地构建二维阵列的响应。虽然这种自下而上的方法与最初提到的两种方法有一些共同之处,但它更通用、更灵活。它使大量设计更容易处理,包括毫米波和光学应用。[7,37–44] 在这种方法中,最好使用场的多极展开来讨论组成粒子的光学作用。[45–51] 在多极展开中,散射体的光学响应用一系列由外部照明和形成超表面的所有其他粒子的散射场引起的多极矩来表示。使用不断增加的
光学非转录表现为相反的激发方向的光的传播差异。非重生光学器件传统上是通过基于法拉第旋转的相对较大的组件(例如光学隔离器)实现的,从而阻碍了光学系统的微型化和整合。在这里,我们通过跨表面的自由空间非偏置传输,该跨表面由由二氧化硅与二氧化钒杂交的二维纳米孔阵列组成(vo 2)。这种效果来自谐振器支持的MIE模式之间的磁电耦合。纳米孔子的非转化响应无需外部偏见而发生;取而代之的是,互惠因触发vo 2相变的入射光即以一个方向的速度而损坏。非偏置传输是在λ= 1.5 µm附近的电信范围内覆盖100 nm以上的宽带。每个纳米架单位电池的体积仅占据〜0.1λ3,跨表面厚度的测量约为半微米。我们的自偏纳米唱片剂在150 w/cm 2或每纳米甲孔子的速度上表现出非股骨的强度下降到非常低的强度。我们估计皮秒级传输降落时间和亚微秒尺度的传输升高。我们的示范将低功率,宽带和无偏见的光学非转录带给纳米级。
摘要:跌倒和随后的并发症是导致发病率和死亡率的主要因素,尤其是在老年人中。为了解决这个问题,我们旨在开发一种轻巧的动态装置,以增加鞋子和步行表面之间的摩擦,这些设备在各个表面,尤其是冰之间有效。受自然界中发现的爪子和鳞片的启发,我们开发了一系列的基里加米结构,这些结构可用于鞋类外极端,以在前脚中产生较高的摩擦力。我们通过数值模拟,体外表面相互作用和体内人力板测量评估了这些元面孔,以鉴定能够调节一系列表面摩擦的最佳基里加米设计。我们预计这些系统的潜在应用可以帮助减轻各种环境中跌倒的风险。
主动的元信息有望对光波前进行时空控制,但是通过像素级控制实现高速调制仍然是一个尚未达到的挑战。虽然可以通过纳米级光限制(例如等离激子纳米颗粒)实现局部相控制,但所得的电极间距会导致较大的电容,从而限制速度。在这里,我们演示了通过在等离子有机混合体系结构中局部控制元图元素的局部控制局部控制的射线转向横梁转向的操作。我们的设备包括一个工程设计的瓦楞金属插槽阵列,用于支持连续体(Quasi-BICS)中的等离子准结合状态。这些等离子准BIC提供了整合有机电用量(OEO)材料(例如JRD1)的理想光学限制和电气特性,并且以前尚未在光学跨面中使用。我们获得了0.4 nm/v的准静态共振可调节性,我们将其利用以在三个衍射订单之间引导光,并实现〜4 GHz的电光带宽,并有可能通过缩放规则进行进一步的速度提高。这项工作展示了子微米和Gigahertz级别的光的片上时空控制,为3D传感和高速空间光调制的应用打开了新的可能性。
在快速发展的Terahertz(THZ)技术领域中,全型元信息(ADMS)已成为一种显着的驱动力,可能会改变各种行业和科学训练。这篇评论对与THZ ADMS相关的基本原理,材料,制造技术和最新设计方法进行了全面和深入的研究,包括人工智能在其发展中的新兴作用。各种应用都深入到这些元信息的范围内,例如高分辨率成像,高级传感和可调设备的开发,展示了THZ范围内ADM的多功能性和承诺。此外,讨论了跨学科合作的重要性,并在推动基于ADM的THZ设备的边界时的尖端技术集成。随着该领域的不断增长和创新,预计全端元元面积的应用和含义预计将变得越来越多样化,为各个部门的变革突破铺平了道路。