日常生活中先进复合材料的使用量不断增加,并取代了现有的整体材料。这些复合材料是根据人类的特定应用需求而设计和制造的,也符合标准要求。在本研究中,从农业和工业废弃物中提取的陶瓷增强材料铝金属基复合材料,即AA7075/焊渣和 AA7075/稻壳灰通过液态金属搅拌铸造路线制造,增强材料含量在基体中从 2 到 12(wt.%)不等。测量了 AA 7075 金属基复合材料的机械和微观结构特性,并与基材进行了比较。结果表明,复合材料的机械强度和硬度有所提高。在增强颗粒浓度较高的情况下,冲击能量也显著提高。复合材料的冲击能量在 9% 和 12% 时增加到 3 J,12% 焊渣 MMC 获得的最大抗拉强度为 173 MPa。12% 焊渣 MMC 获得的最高硬度为 98 BHN。此外,微观结构结果反映了搅拌铸造工艺的显著晶粒细化,基质中具有良好的界面特性,农用增强材料颗粒分散均匀。关键词:力学性能;工业废弃物;AA7075;农业废弃物;微观结构分析
抽象的基于铁的超导体(IBSS)由于其出色的特征,例如超高临界场和最小电磁各向异性,因此对于高场应用而言有希望。创建具有升高的传输临界电流密度的多因素超导电线对于实际使用至关重要。管道(坑)技术中的粉末通常用于此目的,但是实现最佳结果需要仔细探索粉末微观结构特性。这对于(BA,K)122(从应用的角度来看,IBS 122)等超导体特别重要,其中诸如组成元素的反应性,波动性和毒性等因素会影响相位形成。钾的挥发性通常会导致非化力计量条件,从而在配方中引入过量的钾。这项研究的重点是钾过量δ对“最佳掺杂”(Ba 0.6 k 0.4 +δ)Fe 2的微结构性质的影响为2相(0⩽δ⩽0.08)。使用诸如扫描电子显微镜,X射线衍射和温度依赖性磁化测量的技术,我们证明了具有控制晶粒尺寸的超导相的几乎纯粉末的能力。我们的发现与坑线的制造有关,其中晶粒尺寸强烈影响机械变形。晶粒尺寸也会影响传输性能,如先前的研究所观察到的那样,在高磁场下,晶粒尺寸减少了电流的能力。
核心必修模块(所有核心模块均由伦敦大学学院布卢姆斯伯里校区的材料发现研究所教授) NSCI0009:先进材料的微观结构控制(15 个学分) 本课程旨在让来自不同科学背景(材料、化学、物理、工程、化学工程和其他相关科学和工程学科)的学生发现他们先前的知识可以应用于材料科学,从而产生良好的效果,并使该学科及其行业受益。为了实现这一目标,本课程强调控制性能的微观结构因素,并展示开发此类微观结构的策略。本课程还旨在为希望探索如何将他们的学科特定技能应用于更广泛的材料科学背景的科学和工程学科学生提供学术拓展。该模块还旨在通过材料表面处理、增材制造和严重塑性变形方面的最新技术进步案例研究来巩固对微观结构控制策略的理解和知识,并让学生掌握可转移技能,以推进材料加工和制造技术,开发新一代先进材料。评估:第一学期,40% 课程作业(问题表和短文)和 60% 笔试 NSCI0012:材料设计、选择和发现(15 学分) 本模块旨在让学生掌握应用和市场驱动场景中材料选择的原则和过程的一般知识。特别是,将详细讨论 MF Ashby 开发的材料选择规则和相应概念(例如,材料指数和材料性能图表以及 Ashby 图)。通过小组辅导中的案例研究讨论,将理论付诸实践,巩固对这些阈值概念和技能的理解。它还旨在为具有广泛科学/工程背景的学生提供材料选择和产品设计背景下的材料科学基础知识。特别是,将讨论工程材料的结构-性能关系(包括相图和转变)。该模块重点介绍材料选择和产品设计中的变化力量(例如新兴的能源和环境限制),以及新材料和相关技术如何为开发创新解决方案以满足全球需求提供机会。评估:第一学期,小组设计项目形式,两次演示(创意推介和最终设计演示)以及最终报告(每名学生 2,000 分)。
材料选择:为特定的工程应用选择材料 相图分析:解释材料行为的相图。 微观结构分析:用显微镜检查金属微观结构。 热处理效果:研究热处理对钢的影响。 材料性能测试:比较各种金属的机械性能。 疲劳测试:测试金属的疲劳耐久性。 绿色材料:制造业使用的绿色材料研究报告 智能材料:研究和展示智能材料。
其中w h与激发频率成正比,并且W e与激发频率3的平方成正比。在低于1 kHz的较低含量频率的应用中,例如运动核,磁滞损失对铁损失的影响大于涡流损失的影响。由于SMC核的磁滞损失高于电钢4),因此由于将SMC核应用于电动机而导致的运动效率降低是一个问题。在这种背景下,SMC核心的磁滞损失的减少对于扩大这种类型的核心的应用至关重要,并且已经进行了各种研究5-6)。但是,在大多数情况下,很难对磁滞损失进行定量讨论,因为在这些研究中影响了SMC核心的磁滞损失,并且很难定量地将这些因素分开。因此,为了进一步减少SMC核心的磁滞损失,定量分离影响Hystere SIS损失的因素并减少每个因素的影响很重要。因此,在这项研究中,进行了以下内容,以阐明减少SMC核心磁滞损失的指南。首先,安排了影响顽固性的微观结构因素的常规知识,与滞后丧失密切相关,并得出了磁滞损失和微结构因素的关系方程。然后,量化了微结构因子对SMC核心磁滞损失的影响,并且具有最大的因素
sheetlet(绝对E2A)。e2a的迁移率定义为舒张和末端螺旋杆之间的绝对E2a的差异。导致紧凑的RV,心肌细胞取向在圆周范围内,整个心室的逐渐变化。在小梁中,RV心肌细胞的方向主要是纵向。图1。在志愿者和患者中也看到了类似的模式。在所有参与者中,RV无室壁和隔膜中的绝对E2a从二骨上增加到末端的螺旋杆,表明动态的微观结构重新安排。与正常的RV相比,SRV表现出相似的E2A迁移率(26.1±10.8°Vs 26.4±9.2°)。与正常心脏(21.1±14.9°vs 48.1±10.2°; p <0.001)相比,E2A的迁移率降低了,讨论动态微结构重新额度是功能性RV平板的建议。与正常心脏相比,我们证明了SRV隔膜中的E2A迁移率降低,这表明这些患者中间隔微观结构的动态运动受损。结论,我们已经证明了人RV内的心肌细胞的排列,在正常心脏和右心室功能障碍的极端模型中。这为RV疾病患者的DT-CMR和临床状况的潜在关联的未来研究打开了大门。感谢Ricardo Wage和Raj K Soundarajan的感谢,他们为CMR研究提供了支持。
核心必修模块(所有核心模块均由伦敦大学学院布卢姆斯伯里校区的材料发现研究所教授) NSCI0009:先进材料的微观结构控制(15 个学分) 本课程旨在让来自不同科学背景(材料、化学、物理、工程、化学工程和其他相关科学和工程学科)的学生发现他们先前的知识可以应用于材料科学,从而产生良好的效果,并使该学科及其行业受益。为了实现这一目标,本课程强调控制性能的微观结构因素,并展示开发此类微观结构的策略。本课程还旨在为希望探索如何将他们的学科特定技能应用于更广泛的材料科学背景的科学和工程学科学生提供学术拓展。该模块还旨在通过材料表面处理、增材制造和严重塑性变形方面的最新技术进步案例研究来巩固对微观结构控制策略的理解和知识,并让学生掌握可转移技能,以推进材料加工和制造技术,开发新一代先进材料。评估:第一学期,40% 课程作业(问题表和短文)和 60% 笔试 NSCI0012:材料设计、选择和发现(15 学分) 本模块旨在让学生掌握应用和市场驱动场景中材料选择的原则和过程的一般知识。特别是,将详细讨论 MF Ashby 开发的材料选择规则和相应概念(例如,材料指数和材料性能图表以及 Ashby 图)。通过小组辅导中的案例研究讨论,将理论付诸实践,巩固对这些阈值概念和技能的理解。它还旨在为具有广泛科学/工程背景的学生提供材料选择和产品设计背景下的材料科学基础知识。特别是,将讨论工程材料的结构-性能关系(包括相图和转变)。该模块重点介绍材料选择和产品设计中的变化力量(例如新兴的能源和环境限制),以及新材料和相关技术如何为开发创新解决方案以满足全球需求提供机会。评估:第一学期,小组设计项目形式,两次演示(创意推介和最终设计演示)以及最终报告(每名学生 2,000 分)。
虽然机械测试和微观结构特征等破坏性评估方法通常用于评估添加性制造的(AM)材料和零件的机械性能,但非破坏性评估(NDE)方法可以提供重要的见解,而无需分区和损坏零件。由于缺陷的存在(例如孔,缺乏融合,表面粗糙度等)通常会显着影响AM零件的机械性能,了解关键特征(例如类型,大小和分布),这些缺陷的位置是管理绩效期望以及资格和可用性的关键。
研讨会将通过口头讨论和实践演示,帮助专业人员和年轻研究人员打下坚实的基础。重点将放在以下领域:• 铝合金冶金学、强化机制和最新进展• 微观结构研究与结构-性能-加工关系• 清洁铝基合金的生产• 热机械加工对铝合金质量的影响• 使用现代质量控制方法最大限度地减少加工缺陷• 粉末冶金应用中的铝基部件• 铝合金的表面处理• 铝合金的高科技应用
由于其优异的性能,先进陶瓷、金属和复合材料等硬质材料具有巨大的经济和社会价值,可应用于众多行业。了解它们的微观结构特征对于提高其性能、材料开发和释放其未来创新应用的潜力至关重要。然而,它们的微观结构显然是分层的,通常跨越几个长度尺度,从亚埃到微米,这对它们的表征提出了严峻的挑战,尤其是原位表征,这对于理解控制微观结构形成的动力学过程至关重要。本综述全面描述了快速发展的超小角度 X 射线散射 (USAXS) 技术,这是一种探测硬质材料纳米到微米级特征的无损方法。USAXS 及其补充技术在为硬质材料开发和应用时,可以提供有关其孔隙率、晶粒尺寸、相组成和不均匀性的宝贵见解。我们讨论了 USAXS 在硬质材料中的基本原理、仪器、优势、挑战和全球地位。通过选定的示例,我们展示了该技术在揭示硬质材料微观结构特征方面的潜力,以及它与先进材料开发和制造工艺优化的相关性。我们还提供了对 USAXS 持续发展的机遇和挑战的看法,包括多模态表征、相干散射、时间分辨研究、机器学习和自主实验。我们的目标是促进 USAXS 技术的进一步实施和探索,并激发它们在硬质材料科学的各个领域的更广泛应用,从而推动该领域的发现和进一步发展。