它。因此,如果像mtDNA这样的圆形DNA具有m识别(限制)位点,则该酶在消化后将其分散成M段。限制位点的数量和位置随核苷酸序列而变化。相比,两个DNA序列的相似性越高,裂解模式越接近。因此,可以通过比较限制位点的位置来估计两个同源DNA之间的核苷酸取代的数量。同样,可以从两个或分类的DNA片段的比例中估算核苷酸取代的数量。Upholt(8)研究了这两个问题,但他的锻炼并不一般,似乎涉及一些错误。fur-hoverore,upholt不关注种群中DNA序列的异质性明显高度(5)。当研究紧密相关的物种之间的遗传差异时,有必要消除这种异质性的作用。本文的目的是开发一个更严格的DNA遗传差异数学模型,并提出了一种统计方法,用于分析限制酶研究的数据。在前四个部分中,我们要么假设人群中没有多态性,要么仅考虑一对生物(个体)之间的遗传差异。在第五部分中将删除无多态性的假设。
流经病毒(IAVS)对人类和动物健康构成了显着威胁。制定能够引起对抗原多样性IAV菌株的广泛的异源保护的IAV疫苗策略在有效控制该疾病方面至关重要。这项研究的目的是检查各种H1N1插入疫苗策略的免疫原性和保护性效率,包括单价,双重和异源促进疫苗接种方案,针对不匹配的H1N2 Suwin2 Swine-lofenza-lofEenza-lofeNza virus。五组是同源的,促进油的促进疫苗接种了一个油添加的全部吸收病毒(WIV)单价a/swine/georgia/georgia/27480/2019(GA19)H1N2疫苗,WIV单位a/sw/sw/sw/sw/sw/sw/sw/sw/sw/sw/sw/sw/a0263666116/2021(MN1) A/California/07/2009(CA09)H1N1,由CA09和MN21组成的WIV二价疫苗,或仅辅助疫苗(模拟疫苗接种组)。第六组用CA09 WIV进行了主要疫苗接种,并用MN21 WIV(异源Prime-Boost组)增强。四周后,促进猪的鼻内和气管内被A/猪/乔治亚/27480/2019,H1N2猪IAV领域分离株挑战。疫苗诱导的保护是根据五个关键参数评估的:(i)抑制(HAI)抗体反应的血凝性抗体反应,(ii)临床评分,(III)鼻拭子和呼吸道组织植酸盐中的病毒滴度,(III)降低病毒滴度,(IV)BALF细胞学学和(V)。不匹配的疫苗接种方案不仅未能在挑战后授予临床和病毒学保护,而且加剧了疾病和病理。While all vaccination regimens induced seroprotective titers against homologous viruses, heterologous prime-boost vaccination failed to enhance HAI responses against the homologous vaccine strains compared to monovalent vaccine regimens and did not expand the scope of cross-reactive antibody responses against antigenically distinct swine and human IAVs.与模拟疫苗接种的猪相比,异源促进的猪表现出长时间的临床疾病和肺部病理的增加。
这项工作比较并量化了带有太阳能光伏(PV)的住宅建筑物的案例研究中三个电池系统损耗表示的年损失。两个损失表示形式考虑了不同的操作条件,并使用电池电力电子转换器(PEC)的测量性能,但使用恒定或依赖电流的内部电池电池电阻的不同。第三表示是无关紧要的,并使用(固定的)往返效率。工作使用负载和PV轮廓的次数测量,包括不同的PV和电池尺寸组合的结果。与具有当前依赖性内部电阻的情况相比,结果表明使用恒定电池内部电阻不足,并将年度损失差异量化为-38.6%。结果还表明了通过固定的往返效率对电池系统的效率进行建模的缺陷,其损失差异在-5%至17%之间,具体取决于情况。此外,突出显示了计算细胞损失的必要性,并且量化了其对转换器加载的依赖性。
对离子在半导体中产生的电离径迹的产生和传输进行 TCAD 模拟与可靠性以及辐射探测器的设计息息相关。具体而言,可靠性应用侧重于模拟在测试半导体元件是否易受软错误(逻辑器件、存储器,例如 [1] )和单粒子烧毁(功率器件,例如 [2] )影响时发生的瞬态现象。主要的 TCAD 工具已经包含模型和程序(例如 [3] ),但它们存在一些实际限制,例如仅限于单一类型的离子、有效能量范围的限制以及仅适用于硅的校准。此外,现有模型在数值上比较僵化,不易针对其他类型的离子、半导体和能量范围进行校准。本文提出了一个基于物理导向的 Crystal-Ball 函数 [4] 的半导体中低能离子沉积电荷的统一模型。特别关注能量范围分别为 0 – 10 MeV 和 0 – 160 MeV 的 α 粒子和质子。与常用模型相比,这种选择具有几个优势。特别是,α 粒子和质子使用相同的建模函数。此外,与现有解决方案相比,所提出的模型使用的校准参数更少,数值条件良好,并且其校准参数更透明,因为它们与可测量的物理量相关。最后,所提出的模型可以轻松扩展到不同的半导体和离子类型。
钒氧化还原流量电池(VRB)系统涉及复杂的多物理和多时间尺度相互作用,其中电解质流速在静态和动态性能中起关键作用。传统上,固定流量已用于操作方便。但是,在当今高度动态的能源市场环境中,根据运营条件调整流量可以为提高VRB能源转换效率和成本效益提供显着优势。不幸的是,将电解质流速纳入传统的多物理模型对于VRB管理和控制系统来说过于复杂,因为实时操作要求用于船上功能的低计算和低复杂模型。本文介绍了一种新型的数据驱动方法,该方法将流速集成到VRB建模中,增强了数据处理能力和VRB行为的预测准确性。所提出的模型采用封闭式复发单元(GRU)神经网络作为其基本框架,在捕获VRB的非线性电压段方面表现出了非凡的熟练程度。GRU网络结构经过精心设计,以优化模型的预测能力,流速被视为关键输入参数,以解释其对VRB行为的影响。模型改进涉及分析在VRB操作中在各种流速下获得的精心设计的模拟结果。还设计和进行了实验室实验,涵盖了电流和流速的不同条件,以验证所提出的数据驱动的建模方法。对几种最新算法进行了比较分析,包括等效电路模型和其他数据驱动的模型,证明了考虑流速的基于GRU的VRB模型的优越性。由于GRU在处理时间序列数据方面的出色能力,该模型在宽范围内提供了令人印象深刻的准确终端电压预测,低误差率不超过0.023 V(1.3%)。这些结果表明了所提出的方法的功效和鲁棒性,突出了对管理和控制系统设计的准确VRB建模中流速的新颖性和重要性。
需要开发适应不断变化的生产情景的植物品种,特别是在气候变化的情况下,这要求作物满足日益复杂和多样化的需求,这对育种者来说是一个巨大的挑战。在此背景下,追求赋予所需作物特性和适应性的性状组合比以往任何时候都更加重要,因此有必要加强多标准或多性状育种(Moeinizade 等人,2020 年)。利用分布在基因组中的完整核苷酸多样性来预测数量性状的育种值(基因组预测,GP,Meuwissen 等人,2001 年)已证明其在育种计划中的有效性。事实证明,这种方法有助于提高遗传增益率并降低成本(Hickey 等人,2017 年)。然而,为了应对气候变化和更明确的环境目标种群(Chapman 等人,2000 年),对多环境(ME)育种的需求日益增长,这需要采用基因组预测方法来解释基因型和环境(GxE)之间相互作用的出现(Rincent 等人,2017 年)。先前的研究试图在基因组选择(GS)中解决 GxE。例如,Burgueño 等人(2012) 开发了多环境统计模型。然而,这些模型仅考虑线性和非因果环境效应,从而降低了预测准确性的可能增益,尤其是对于复杂的综合性状或与校准集有显着差异的环境(Rogers and Holland,2022)。Heslot 等人。另一方面,(2014 年)使用作物生长模型 (CGM) 来推导环境协变量。与标准 GS 模型相比,在 GS 框架内加入环境协变量可提高预测准确性并降低未观察环境中的预测变异性。整合作物模型以解决 GxE,如 Heslot 等人的研究所示。(2014) ,强调了这种方法在所述育种环境中的实用性。尽管如此,考虑大量协变量会显著增加问题的复杂性,使得建模变得极具挑战性(Larkin 等人,2019 年)。
摘要 本文讨论了可用的人工智能 (AI) 模型的组合,即神经语言模型 (NLM) 与经过训练的 GAN 和人类解释,以促进架构构思。工作流程使用语义提示识别推测设计的概念场景。结果成为视觉参考,以补充修订的语义描述,以指导 VQGAN+CLIP 模型,利用对结果的控制,然后使用降维对结果进行排序,并进一步策划以训练其他模型 (GAN)。NLM 对文本输入的解释增加了跨越更大语义距离的可能性,以实现创造性的视觉结果,而 AI-人类步骤的嵌套工作流程可以自动查询更大的解决方案空间。此外,它还考虑了基于语言 (NLM) 的处理模型 (LeCun, 2021) 导致的视觉数据 (Hadamard, 1945) 的低带宽、还原编码问题,这可能会限制设计机构。