Loading...
机构名称:
¥ 1.0

摘要 - 电池储能系统(BESS)的最新电荷(SOC)的准确预测对于电动汽车的安全性和寿命至关重要。为了克服多尺度特征融合和全球特征提取之间现有方法的不平衡,本文介绍了基于门控复发单元(GRU)的新型多尺度效果(MSF)模型,该模型是专门为实用BESS中复杂的多步社预测而设计的。Pearson相关分析首先是为了识别与SOC相关的参数。然后将这些参数输入到多层GRU中以进行点特征。同时,参数在输入双阶段多层GRU之前进行修补,从而使模型能够在不同的时间间隔内捕获细微的信息。最终,通过自适应重量融合和完全连接的网络,进行了多步骤的SOC预测。在数天内进行了广泛的验证,可以说明所提出的模型在实时SOC预测中达到的绝对误差小于1.5%。

Multi-scale Fusion Model Based on Gated Recurrent Unit ...

Multi-scale Fusion Model Based on Gated Recurrent Unit ...PDF文件第1页

Multi-scale Fusion Model Based on Gated Recurrent Unit ...PDF文件第2页

Multi-scale Fusion Model Based on Gated Recurrent Unit ...PDF文件第3页

Multi-scale Fusion Model Based on Gated Recurrent Unit ...PDF文件第4页

Multi-scale Fusion Model Based on Gated Recurrent Unit ...PDF文件第5页

相关文件推荐

2025 年

...

¥8.0
2025 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2025 年

...

¥7.0
2015 年

...

¥1.0
2018 年
¥1.0
2024 年

...

¥31.0
2013 年

...

¥4.0
2021 年
¥3.0
2024 年
¥3.0
2024 年

...

¥5.0
2021 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年

...

¥7.0
2021 年

...

¥21.0
2024 年

...

¥1.0