摘要:位于蛋白质 - 水界面的Poly(Proline)II螺旋基序稳定天然蛋白质的三维结构。在此报告是合成仿生聚(脯氨酸)稳定的多肽纳米结构的第一个例子,该纳米结构是通过连续的N-羧基氢化物(NCA)聚糖的直接开环聚合诱导的自组装(ROPISA)过程获得的。发现使用多功能8臂启动器对于形成纳米颗粒至关重要。蠕虫状胶束以及球形形态。证明了纳米结构用染料的负载。这种快速和开放式的过程可访问具有在纳米医学中应用的基于氨基酸的纳米材料。
非对映选择过程是由使用含有α-苯基胺的氨基酸手性池衍生物产生的。7疏水π堆积基序(用虚线指示)将化合物具有很高的水解稳定性和对配体取代的整体惰性,例如图。1即使在10 d上pH 1处也不“展开”。相应地,水溶性化合物的范围很容易大规模制备。这些有利的研究使我们和合作者能够探索冶金生物化学的各个方面。8 - 14越来越多的证据表明,化合物模仿了短阳离子α-螺旋肽的特性。自然发生的环形抗癌和抗菌分子与它们具有多种结构特征。15
疾病。3 一种有吸引力的前药设计策略是将两个或多个不同的功能基序与可裂解的连接子结合起来。使用这种前药的理由是利用多组分前药的潜在协同作用或靶向作用,从而改善药代动力学并降低毒性。4 – 9 有几种不同的策略可以选择性地裂解连接子并释放母体药物。一些利用疾病病理生理学的独特方面,而另一些则基于疾病特定的递送技术。前药的一个典型例子是抗菌剂舒他西林®,它由不可逆的β-内酰胺抗生素氨苄西林、β-内酰胺酶抑制剂青霉烷酸和二酯键组成,并在体内同时水解为
结果与讨论:发现了基因表达较高或较低的突变体,最终成熟谷物植酸酶活性 (MGPA) 较高或较低。田间试验和发芽期间的肌醇磷酸分析表明,PAPhy_a 不会影响试验条件下的农艺性能,但它确实缩短了发芽期间磷酸盐动员的滞后时间。较高的内源性 MGPA 可提高饲料用谷物质量,因为它可提高单胃动物的磷酸盐生物利用度。此外,由于 PAPhy_a 启动子的目标 CRE 基序与一系列种子表达基因(如关键的谷物和豆类储存基因)共享,因此当前结果展示了一种调节一系列种子基因的单个基因表达水平的概念。
NBD探针对环境敏感,对胺和硫醇高度反应。 这种环境敏感性提供了关键优势,可促进生物分子相互作用和缓冲系统内的自组装。 硝基群的强大电子撤回性质导致NBD衍生能够进行芳族替代(如果存在合适的离开组),从而帮助研究人员开发了各种不同的感应基序来为生物核粒子。 这些关键的化学特性导致荧光团易于化学修饰,并且可以连接到多种蛋白质以及其他生物分子上。 由于可以将NBD固定在生物分子上,因此它使NBD化合物在脂质膜研究,溶酶体脂质体分析和药物筛查中具有宝贵的资产。NBD探针对环境敏感,对胺和硫醇高度反应。这种环境敏感性提供了关键优势,可促进生物分子相互作用和缓冲系统内的自组装。硝基群的强大电子撤回性质导致NBD衍生能够进行芳族替代(如果存在合适的离开组),从而帮助研究人员开发了各种不同的感应基序来为生物核粒子。这些关键的化学特性导致荧光团易于化学修饰,并且可以连接到多种蛋白质以及其他生物分子上。由于可以将NBD固定在生物分子上,因此它使NBD化合物在脂质膜研究,溶酶体脂质体分析和药物筛查中具有宝贵的资产。
ydat在某些lambdoid噬菌体和预言中相当于CII阻遏物的功能。ydat可作为DNA结合蛋白起作用,并识别5 0 -TTGATTN 6 AATCAA-3 0倒置重复。DNA结合结构域是一个螺旋 - 螺旋 - 螺旋(HTH)含有POU域,其次是长螺旋(6),形成了一个反平行的四螺旋束,形成了四聚体。与典型的HTH基序相比,HTH基序中的螺旋2和识别螺旋3之间的循环异常长,并且在YDAT家族内的序列和长度高度变化。POU结构域具有相对于自由结构中的螺旋束相对于螺旋束的自由度,但是它们的方向固定在DNA结合上。
基序发现算法对于识别基因序列中的重要模式至关重要。这些重复出现的模式称为基序,具有重要的生物学意义,广泛应用于生物信息学,例如早期疾病检测、药物设计、环境健康研究和 DNA 取证等。已经开发了几种用于基序发现的算法和工具,每种算法和工具都有自己的优点和局限性。尽管取得了这些进展,但基序发现仍然是生物信息学中的一个问题,需要生物学家和计算机科学家的团队合作。本文介绍了一些重要的基序发现算法及其子类的功能、优点和缺点。此外,本文对上述算法进行了比较分析,并总结了该领域未来的研究方向。
抽象的花色苷是园艺作物中的重要质量特征。转录因子(TFS)在花青素的生物合成中起关键的调节作用。许多TF在园艺作物中众所周知是花青素生物合成的转录激活剂,而最近已经承认抑制花青素合成的TFS。在这里,我们关注的是最近在园艺作物中对TF的作用和机制负调节花青素生物合成的最新进展。我们讨论了TFS抑制激活复合物的功能,调节阻遏物的TFS和抑制基序,以及转录后调节,翻译后修饰以及TFS的甲基化以及抑制峰基素生物合成的甲基化。这些信息将为这些TF的未来利用提供见解,以提高园艺作物的质量。
摘要 — 将信息编码在预先合成的脱氧核糖核酸 (DNA) 链 (称为基序) 组合中是一种有趣的 DNA 存储方法,有可能避免逐个核苷酸 DNA 合成的高昂成本。基于对 HelixWorks 经验数据集的分析,我们为这种设置提出了两种通道模型 (有干扰和无干扰),并分析了它们的基本限制。我们提出了一种编码方案,通过利用通道输出处可用的所有信息来接近这些限制,这与 Preuss 等人为类似设置开发的早期方案不同。我们强调了通道容量曲线与合成 (写入) 和测序 (读取) 成本之间的基本权衡之间的重要联系,并提供了一种方法来缓解解码复杂性随基序库大小而呈指数增长的问题。