沙质土壤中的Oselle种植面临着主要的挑战,例如水和养分保留率,对植物的生长和产量产生负面影响。这项研究旨在评估微生物接种剂的潜力,以提高缺乏营养的沙质土壤中的roselle生产力。使用八个微生物处理在埃及进行了一次现场实验:枯草芽孢杆菌,假单胞菌荧光症,胸膜胸膜螺旋体,菌根(Mycorrhize)(菌根)(菌根)真菌及其组合以及非启动控制。将微生物接种剂用作种子处理和土壤浸湿,以改善沙质土壤的生育能力。所有微生物接种剂都显着提高了新鲜和干燥的花萼产量,芽生长,种子产量以及整体生物质与对照。枯草芽孢杆菌在产量参数方面的增强最大。将芽孢杆菌,假单胞菌,胸膜和菌根结合起来,导致进一步的协同屈服提高了最高332%的控制。与对照植物相比,微生物接种还大幅增加了724%的氮和钾摄取和利用效率。的结果证明了微生物接种剂通过协同促进土壤生育能力和植物生长的协同促进,在营养不足的沙质土壤中显着提高了roselle的生产率和营养的巨大潜力。微生物接种可以为贫穷的沙质土壤中的罗斯尔栽培挑战提供可持续的解决方案。关键词:有益的微生物;营养利用效率;植物生长
抽象的土壤健康是可持续农业,促进植物生长,养分可用性和生态系统稳定性的基础。然而,过度使用化学肥料,单一养殖实践和土壤侵蚀导致土壤肥力的显着下降,因此需要探索替代农业实践。在这种情况下,以活生生生物形式形成的生物量化物已成为有效的微生物溶液,以增强土壤健康。它们通过促进养分可用性,刺激植物生长并改善土壤结构来起作用。本评论探讨了各种类型的生物肥料,例如氮固定细菌,磷酸盐 - 溶解的微生物和菌根真菌,详细介绍了它们在农业中的作用机理和特异性应用机理。此外,该评论强调了生物量化剂的众多好处,包括它们在减少化肥依赖性,提高农作物产量和促进可持续农业实践中的作用。尽管有潜力,但一些挑战阻碍了生物肥料的广泛采用,包括农民之间的认识有限,质量控制问题以及对有效的应用技术的需求。通过解决这些挑战,生物量化剂可以显着促进环保的农业实践,强调它们在实现可持续农业系统方面的重要性并促进长期的土壤健康。关键词:生物量化剂,土壤健康,可持续农业,微生物解决方案,植物生长。
控制土传疾病是番茄生产的主要问题之一。本研究旨在调查使用富含细菌和真菌的蚯蚓堆肥对感染根结线虫 (Meloidogyne javanica) 和枯萎病 (Fusarium oxysporum) 的番茄植株生长参数的影响。蚯蚓堆肥的应用量包括控制量、最佳量和过量量。生物防治剂是菌根真菌 (Glomus mosseae) 和两种拮抗细菌 (枯草芽孢杆菌和恶臭假单胞菌)。这些生物防治剂可单独使用、二元组合使用,也可在不同蚯蚓堆肥应用量下以三元组合使用。实验结束时测量了生长参数,包括茎干湿重、根干湿重和叶绿素指数。结果表明,在两种水平上施用蚯蚓堆肥以及在所有组合处理中接种生物防治剂,显著 (P < 0.001) 改善了感染病原体的植物的生长参数。在两种水平的蚯蚓堆肥和感染镰刀菌的三种生物防治剂组合中获得的大多数研究参数最高,而在蚯蚓堆肥施用和生物防治剂以及感染两种病原体的对照条件下获得的生长参数最低。总体而言,我们的研究结果表明,蚯蚓堆肥和生物防治剂的组合使用在提高番茄植株对根结线虫和镰刀菌的防御能力方面具有显著效果,因此可以提高植株的生长水平。
氮是植物生长和生产力的关键营养素,但在农业中使用的不确定是经济和环境挑战。增强氮的使用效率(NUE)对于促进可持续的作物生产和减轻氮损失的负面影响,例如水污染和温室气体排放至关重要。本评论讨论了旨在改善NUE的各种策略,重点是农艺实践,遗传进步和综合管理方法。与精确的农业技术一起探索了传统的农艺方法,包括氮施加分裂和使用受控释放肥料,这可以根据作物和土壤条件实时调整对氮的实时调整。遗传学和生物技术的进步,例如常规育种,遗传修饰和基因组编辑,已促进了氮的摄入和吸收和同化的改善的作物品种的发展。此外,包括氮固定细菌和菌根真菌在内的有益微生物的作用被强调为增强氮的可用性和减少对合成肥料的依赖的自然手段。审查进一步强调了可持续的实践,例如基于豆类的农作物轮作,连续覆盖作物和有机施肥,这有助于土壤氮的富集和整体土壤健康。通过结合这些农艺,遗传和微生物策略,可以实现一种整体氮管理方法,从而最大程度地提高作物产量,同时最大程度地减少环境影响。这种综合策略支持弹性和可持续的农业系统的发展,从而促进了长期的土壤生育能力和生产力。
在干旱地区,过度用水威胁着农业可持续性和整体生计。 必须最大程度地减少用水量解决这些问题。 日期棕榈(Phoenix dactylifera L.)是象征性的干旱地区和主要的水消费者作物。 将当前的灌溉系统定制到新的水,效率高效的系统中可以帮助应对这种作物的水消耗。 与植物相关的微生物群落对于农业可持续性至关重要,可以提高受水稀缺威胁的地区的用水效率。 因此,当将农业系统适应当前的全球变化设置时,应认真考虑这些社区。 但是,目前尚无有关这些修饰对日期棕榈微生物群落的影响的信息。 这项研究强调了不同土壤水系统(洪水和滴灌,自然条件和废弃农场)对不同土壤深度处的棕榈根真菌群落的影响。 调查结果表明,土壤水系统对真菌群落有明显影响,并且滴灌减少了真菌的多样性,但增加了丰富的羊膜菌根真菌。 我们表明,在所有采样深度上,这些效果都是相似的。 最后,由于根建筑是吸水的主要决定因素,因此我们在这些不同的土壤水系统下揭示了根建筑的不同行为至160 cm的深度。在干旱地区,过度用水威胁着农业可持续性和整体生计。必须最大程度地减少用水量解决这些问题。日期棕榈(Phoenix dactylifera L.)是象征性的干旱地区和主要的水消费者作物。将当前的灌溉系统定制到新的水,效率高效的系统中可以帮助应对这种作物的水消耗。与植物相关的微生物群落对于农业可持续性至关重要,可以提高受水稀缺威胁的地区的用水效率。因此,当将农业系统适应当前的全球变化设置时,应认真考虑这些社区。但是,目前尚无有关这些修饰对日期棕榈微生物群落的影响的信息。这项研究强调了不同土壤水系统(洪水和滴灌,自然条件和废弃农场)对不同土壤深度处的棕榈根真菌群落的影响。调查结果表明,土壤水系统对真菌群落有明显影响,并且滴灌减少了真菌的多样性,但增加了丰富的羊膜菌根真菌。我们表明,在所有采样深度上,这些效果都是相似的。最后,由于根建筑是吸水的主要决定因素,因此我们在这些不同的土壤水系统下揭示了根建筑的不同行为至160 cm的深度。这项研究的结果为棕榈根建筑和相关的真菌群落提供了新的见解,尤其是在供水危机的背景下,这推动了农业系统的适应性。
Brunda Bn和Manoj Sh Abstract Mulberry是蚕的种植最广泛种植的主食之一。桑叶叶显示出大量细菌,链霉菌,酵母和霉菌,这些微生物为桑树带来了很多好处。有益的微生物可以用作生物肥料来种植,并且作为益生菌,它们又减少了化肥的摄入,反过来又污染了农民的肥料和大量的肥料成本。关键词:桑berr虫,杂氮杆菌,杂草菌根真菌(AMF)简介桑树是世界上最广泛的经济性作物之一,因为它是用于蚕的主食食品,用于丝虫及其许多其他用法。生长,幼虫的发展和随后的茧产量受到桑树叶营养质量的很大影响。根据Charles(2004)[6],下动物没有发达的体液免疫力,可以通过益生菌轻松实现免疫刺激。 以及Amala等。 (2011)[7]坚持益生菌对蚕的免疫力的升级,而不是为疾病提供控制措施。 已经发现,桑叶叶含有大量细菌,链霉菌,酵母和霉菌。 根据Vasantharajan等人的说法。 (1968)[4]在所有氮杂杆菌和北京菌中,观察到近5%至10%的细菌种群。 观察到生长的植物从根接种中受益更多,而不是叶面处理。 像这种植物和氮杂杆菌一样获得互惠率。 根据Shi等人的说法。根据Charles(2004)[6],下动物没有发达的体液免疫力,可以通过益生菌轻松实现免疫刺激。以及Amala等。(2011)[7]坚持益生菌对蚕的免疫力的升级,而不是为疾病提供控制措施。已经发现,桑叶叶含有大量细菌,链霉菌,酵母和霉菌。根据Vasantharajan等人的说法。(1968)[4]在所有氮杂杆菌和北京菌中,观察到近5%至10%的细菌种群。观察到生长的植物从根接种中受益更多,而不是叶面处理。像这种植物和氮杂杆菌一样获得互惠率。根据Shi等人的说法。已经证明,桑叶浸出物既包含碳水化合物和氨基酸。植物将为偶氮杆菌提供碳源,而氮杂杆菌将为氮源提供氮源,因为它是免费的活氮固定剂。(2016)[2]。A number of arbuscular mycorrhizal fungal (AMF) species, within nine AMF genera - Acaulospora , Ambispora , Archaeospora , Claroideoglomus , Diversisporav , Glomus , Gigarspora , Redeckera and Paraglomus , can colonize mulberry roots to form beneficial arbuscular mycorrhizae.AMF具有增加叶片生长和生物量产生的能力,桑树叶和水果的质量和营养潜力,用于蚕生的生长和还原化肥的输入。AM共生也有效地赋予了桑树植物对干旱,盐,重金属和根部疾病的耐受性,尽管改善了水和养分摄取,强化根系,增强的光合作用能力,渗透调节,抗氧化剂,抗氧化剂,总糖,蛋白质,蛋白质,氨基酸,含量和酚类和酚类和酚类和酚类和酚类的活性。这些许多好处被AMF脱颖而出,向桑树植物脱颖而出。根据Taha等人的说法。 (2017)[3]益生菌是可行的,非致病的微生物,如果以足够的量给药,则赋予宿主的健康益处。 用酿酒酵母(酵母)和双歧杆菌(细菌)益生菌补充的桑charomyces叶子用于喂食两种蚕杂交。 对微生物给药的影响进行了研究,对幼虫,pupal和茧和壳重量进行了研究。 以及ERR,Cocooning,Pupution和Cocoon壳百分比。根据Taha等人的说法。(2017)[3]益生菌是可行的,非致病的微生物,如果以足够的量给药,则赋予宿主的健康益处。用酿酒酵母(酵母)和双歧杆菌(细菌)益生菌补充的桑charomyces叶子用于喂食两种蚕杂交。对微生物给药的影响进行了研究,对幼虫,pupal和茧和壳重量进行了研究。以及ERR,Cocooning,Pupution和Cocoon壳百分比。丝丝丝长度,断裂和丝绸%。消化酶(蛋白酶,转化酶和淀粉酶)估计比色。结果表明,B. Bifidum和S. cerevisiae改进了与对照相比的所有测试参数。益生菌的作用可能取决于经过测试的Bombyx Mori杂种。renditta代表生产一公斤生丝所需的可可丝的数量,在所有补充的双子芽孢杆菌或酿酒酵母的补充基中均显着改善。添加酵母(酿酒酵母)和细菌(双歧杆菌双歧杆菌)作为益生菌在桑树叶上的益生菌。
这项研究是在2021 - 2024年间,在北方邦Modipuram的ICAR-印度农业系统研究所进行,以评估综合有机农业系统(IOFS)和综合农业系统(IOFS)的影响,并在土壤生物学特性中对土壤生物学特性对植物,Enzyme Active and enzyme vepent and Freat and corod and Foreal and Frol and Frol and Frol and Froleal corpors and Frol and Foreal system and Frol and Foreal system,coreat和Glod corpors and Foreal systern。iof始终在土壤健康指标方面表现出卓越的性能。在IOF下观察到较高的微生物种群(细菌,真菌和放线菌),尤其是在蔬菜作物下。与IFS模型相比,谷物作物下的土壤(食品系统)显示IOFS模型中细菌种群增加了约41%。类似地,在蔬菜系统下的土壤显示IOFS模型中真菌种群增加了32%。酶活性,包括脱氢酶,β-葡萄糖苷酶,尿素酶和碱性磷酸酶的活性在IOF中显着更高,并显着改善了果实和蔬菜作物。 饲料系统在IOF中显示出脱氢酶(36.8%)和β-葡萄糖苷酶(34.7%)的脱氢酶的改善,与IFS相比。 IOF还显示出易于提取的肾小球素(EEG)和总肾小球素(TG)的水平增加。 蔬菜系统的脑电图和TG分别提高了32%和14%,这表明弧形菌根真菌的活性增强了,碳和氮隔离的潜力。 这些发现突出了有机养分和害虫管理实践在促进土壤生育和可持续性方面的好处。酶活性,包括脱氢酶,β-葡萄糖苷酶,尿素酶和碱性磷酸酶的活性在IOF中显着更高,并显着改善了果实和蔬菜作物。饲料系统在IOF中显示出脱氢酶(36.8%)和β-葡萄糖苷酶(34.7%)的脱氢酶的改善,与IFS相比。IOF还显示出易于提取的肾小球素(EEG)和总肾小球素(TG)的水平增加。 蔬菜系统的脑电图和TG分别提高了32%和14%,这表明弧形菌根真菌的活性增强了,碳和氮隔离的潜力。 这些发现突出了有机养分和害虫管理实践在促进土壤生育和可持续性方面的好处。IOF还显示出易于提取的肾小球素(EEG)和总肾小球素(TG)的水平增加。蔬菜系统的脑电图和TG分别提高了32%和14%,这表明弧形菌根真菌的活性增强了,碳和氮隔离的潜力。这些发现突出了有机养分和害虫管理实践在促进土壤生育和可持续性方面的好处。
1 Smolker, Rachel、Anne Petermann 和 Rachel Kijewski。2018 年。森林正处于危机之中,但生物技术并不是解决办法。The Hill。3 月 28 日。https://thehill.com/opinion/energy-environment/380363-the-forests-are-in-crisis-but-biotechnology-is-not-the-solution/ 2 Wilson, AK、JR Latham 和 RA Steinbrecher。2006 年。转基因植物中的转化诱导突变:分析和生物安全影响。生物技术和基因工程评论 23:209-237;Eckerstorfer MF、M. Dolezel、A. Heissenberger、M. Miklau、W. Reichenbecher、RA Steinbrecher 和 F. Waßmann。2019 年。欧盟对通过基因组编辑和其他新基因改造技术 (nGM) 开发的植物的生物安全考虑因素的看法。生物工程与生物技术前沿 7: 31;Tuladhar, R.、Yeu, Y.、Tyler Piazza, J. 等人,2019 年。基于 CRISPR-Cas9 的诱变经常引起靶向 mRNA 错误调节。自然通讯 10, 4056.;Li, J. 等人,2019 年。全基因组测序揭示 CRISPR/Cas9 编辑棉花植物中罕见的脱靶突变和大量固有遗传和/或体细胞克隆变异。植物生物技术杂志 17(5): 858–868;Wang, X.、M. Tu、Y. Wang 等人,2021 年。全基因组测序揭示 CRISPR/Cas9 编辑葡萄树中罕见的脱靶突变。园艺研究 8: 114。3 有关综述,请参阅 Kawall, K.、J. Cotter 和 C. Then。 2020. 扩大欧盟对农业基因组编辑技术的转基因风险评估。欧洲环境科学 32: 106。4 Commoner, Barry。2002. 揭开 DNA 神话:基因工程的虚假基础。哈珀斯杂志。2 月 1 日。https://grain.org/article/entries/375-unravelling-the- dna-myth 5 Wilson, A. 2021. 基因编辑作物和其他转基因作物会破坏可持续的粮食系统吗?Amir Kassam 和 Laila Kassam (eds.)。重新思考食品和农业。Woodhead Publishing。第 247-284 页。6 Benevenuto RF 等人。2017. 通过蛋白质组学和代谢组学分析确定转基因玉米对非生物胁迫的分子反应。PLoS ONE 12(2): e0173069。 7 Anthony, MA、Crowther, TW、van der Linde, S. 等人,2022 年。欧洲各地林木生长与菌根真菌组成和功能相关。ISME J 16,1327–1336。;Jacott, Catherine N.、Jeremy D. Murray 和 Christopher J. Ridout,2017 年。“丛枝菌根共生的权衡:抗病性、生长反应和作物育种前景”农学,7,第 4 期:75。;Lattuada 等人,2019 年。南里奥格兰德州内菌根与本地果树(桃金娘科)之间的相互作用。植物科学 29(4):1726-1738 8 Nguyen, HT 和 JA Jehle。 2007. 转基因玉米 Mon810 中 Cry1Ab 的季节性和组织特异性表达的定量分析。《植物疾病与保护杂志》114(2): 82-87;Lorch, A. 和 C. Then。2007. 转基因 MON810 玉米植株实际上会产生多少 Bt 毒素?绿色和平组织。https://www.testbiotech。org/sites/default/files/How%20much%20Bt%20toxin%20produced%20in%20 MON810_Greenpeace.pdf 9 Miller, ZD 等人。2019 年。为增加密度而改良的转基因火炬松 (Pinus taeda L.) 的解剖、物理和机械特性。木材和纤维科学 51(2): 1-10。 10 美国国家科学、工程和医学院。2019 年。森林健康和生物技术:可能性和注意事项。华盛顿特区:美国国家科学院出版社,第 94 页。 11 加拿大生物技术行动网络 (2022) 《全球转基因树木发展现状》www.cban.ca/globalstatus2020
摘要:碳流入和流出土壤是有助于控制全球气候的重要过程。土壤生物与气候之间的关系是相互依存的,因为有助于碳和温室气通量的生物同时受到气候变化和土壤管理的影响。温度,土壤水分,pH,养分水平,氧化还原潜力和有机物质量是影响土壤中有机碳流的微生物的关键要素。气候,地形(景观中的坡度和位置),土壤质地,土壤矿物学和土地利用调节这些关键要素,从而调节山圈中的C通量。土壤微生物可以通过促进植物生长,菌根建立和颗粒聚集来增加碳的涌入和储存。相反,微生物通过甲烷生成,根际活性和有机碳矿化导致碳排出。然而,可以使用策略和管理实践来平衡对气氛的碳排放。例如,可以通过促进微生物的植物生长来刺激土壤中的碳涌入和储存,通过作物旋转并覆盖农作物,培养肉虫植物,避免或减少杀菌剂的使用并采用有机耕作,无耕作农作物系统和保守的土壤管理策略。因此,本综述旨在阐明土壤微生物如何有助于增加土壤的C涌入及其对气候变化的重要性。然后,我们还试图收集科学文献中提出的实际行动,以改善土壤中的碳固存和储存。总而言之,该综述为土壤微生物提供了全面的基础,作为碳通量的关键和帮助者,通过刺激或应用有益的微生物来增加农业生态系统中的碳固定和储存,以减少气候变化。
放牧干扰可改变植物根际微生物群落结构,从而改变反馈机制,促进植物生长或诱导植物防御。然而,人们对这种变化在不同放牧压力下如何发生和变化,以及根部代谢物在改变根际微生物群落组成中的作用知之甚少。本研究研究了不同放牧压力对微生物群落组成的影响,并利用代谢组学方法探索了不同放牧压力改变根际微生物组的机制。放牧改变了微生物群落的组成、功能和共表达网络。在轻度放牧(LG)下,一些腐生真菌,如香菇属、Ramichloridium 属、Ascobolus 属。和 Hyphoderma sp. 显著富集,而在重度放牧 (HG) 下,潜在有益的根际细菌,如 Stenotrophomonas sp.、Microbacterium sp. 和 Lysobacter sp. 显著富集。有益的菌根真菌 Schizothecium sp. 在 LG 和 HG 中均显著富集。此外,所有富集的有益微生物都与根系代谢物呈正相关,包括氨基酸 (AA)、短链有机酸 (SCOA) 和生物碱。这表明这些显著富集的根际微生物变化可能是由这些差异性根系代谢物引起的。在放牧压力下,推测根系代谢物,尤其是氨基酸如L-组氨酸,可能调控特定的腐生真菌参与物质转化和能量循环,促进植物生长。此外,为了缓解高放牧压力,提高植物的防御能力,推测根系在放牧干扰下会主动调节这些根系代谢物如氨基酸、中链氨基酸和生物碱的合成,然后分泌它们来促进一些特定的促进植物生长的根际细菌和真菌的生长。总之,禾本科植物可以通过改变根系代谢物的组成来调控有益微生物,在典型的草原生态系统中,不同的放牧压力下,其响应策略也不同。