摘要。虽然各种与根相关的真菌可以促进土壤碳(C)储存,因此有助于缓解气候变化,但到目前为止,该地区的研究基本上集中在菌根真菌上,并且在很大程度上对其他真菌的潜在影响和机制却在很大程度上尚不清楚。在这里,为了识别可以引入农作物以促进c固次的新生物体,我们评估了12种根相关的非杂菌真菌的土壤C储存潜力(跨越了九个属(跨越九个属)(跨越了九个属,并根据特征与土壤中的特征相互链接,从宽池中选择,并基于土壤中的菌方和菌方和cressial and-sedgial and-sedgial cungial cungial cungial cungial undigual。我们种植了与单个分离株接种的小麦植物,允许连续13 C标记。收获后,我们通过测量不同的Origin(植物与土壤)的池以及长期的土壤孵化和大小/密度分馏的不同稳定性来量化C的储存电位。我们在一项平行的体外研究中评估了植物和微生物群落的反应以及真菌的物理学和形态学特征。虽然与12个分离物中的3种接种导致总土壤C显着增加,但在大多数分离株的接种下,土壤C稳定性提高了 - 由于抗C池的增加以及不稳定的池和不稳定的C的减少,土壤C的稳定性和呼吸量的降低。进一步的土壤C稳定性在包括各种植物的植物中呈阳性,包括各种植物的生长,包括较高的植物繁殖体,该植物的繁殖体积较大,繁殖体系的繁殖体系,这些繁殖体系的含量更大,繁殖量较高多种直接和间接的机制,用于对土壤C存储的真菌影响。我们发现,与真菌治疗下的物理限制相比,对微生物分解的代谢抑制更多。我们的研究提供了在植物 - 土壤系统中的第一个直接实验证据,这些证据与特定的非菌根接种
真菌是高度多样的,并且在生态系统中执行许多关键任务,从有机物的分解到营养物质通过菌丝的易位以及土壤中遥远的壁cor的联系。但是,真菌不孤立地生活;取而代之的是,它们与植物和动物建立了密切的关联,作为其复杂的微生物群的一部分。真菌以其对大多数血管植物的基本菌根共生体的作用而闻名,以及与藻类或蓝细菌的地衣共生的作用;鲜为人知的是它们与细菌和RNA病毒的微生物共生关系[1,2]。在1970年通过显微镜观察到了真菌中的细菌性内膜[3],最近的发现表明,这些内共生细菌可以是某些真菌中突出的特征[1,4]。相比之下,大多数在1962年正式描述[5]最初对其宿主的影响(尽管有些可以减少真菌的生长和毒力)的大多数分枝病毒。根瘤菌是一个真菌的一个充分的例子,可以携带细菌和病毒内共生菌,被称为真菌霍洛比恩(图1)。根茎物种用于生产发酵食品,酶和代谢产物。仍然,它们也可能是农作物(包括草莓,地瓜和大米)的致病性,并在免疫验证的人类中引起致命感染。在其著名的特征中,有能力产生霉菌毒素,包括根茎毒素,根茎及其衍生物。另一个引人注目的分解是R的菌株。孢子形成仅随着真菌 - 细菌共生的重建而恢复[7]。有趣的是,关于根瘤菌毒素产生和非生产菌株的研究表明,参与根蛋白毒素产生的生物合成基因并不是真菌的起源。相反,所有产生根茎毒素的菌株均由细菌共生体定植,这些菌株含有能够产生根蛋白毒素的多酮化合物生物合成基因[6]。缺乏细菌共生体的微孢子不再无性繁殖并形成孢子囊和孢子囊孢子[7]。的确,细菌共生体是在孢子孢子中遗传的(图1),以确保它们向后代的传播[7]。r。Microsporus需要2个兼容伴侣(一种构成类型的阳性(MT+)和一种负型负菌株(MT-)菌株),并与Trisporic Acid(一种性激素)的协作产生,用于形成Zygospores的性激素(图1)。非常明显,
当前的常规农业系统在很大程度上依赖于矿物质肥料和化学植物保护产品的使用,从而造成了严重的环境后果和对化石资源的依赖性。土壤微生物有可能以更可持续的方式改善作物营养和健康。尤其是植物 - 共生植物植物菌根真菌(AMF)已被证明为植物提供了一系列好处。虽然天然AMF群落经常在作物场中耗尽,但已显示AMF接种到土壤中可以恢复其在土壤中的功能并支持作物产量。但是,这些效果通常与上下文有关。在某些站点时,AMF的应用带来了良好的结果,但在其他站点中却没有。最新的研究暗示了本地土壤微生物组在确定外部AMF是否带来理想的好处的作用。等离子体技术可能会提供潜在的解决方案来利用对不同站点观察到的条件,并提高AMF接种的有效性。血浆技术可用于不同的目的,以刺激或灭活生物系统,具体取决于生成类型和过程参数。,例如,高电能与空气或水等培养基相互作用,血浆诱导,提供物理(UV发射,电场)和反应性物种的化学产生 - 可用于消除有害微生物或有机污染物的特征。但是,该技术也可以用来刺激土壤微生物组和有益的微生物。血浆处理水对土壤微生物组的影响及其刺激有益土壤生物的潜力目前尚不清楚,应与莱布尼兹血浆科学技术研究所合作研究。一种可能的方法可能是应用血浆处理的水(PTW),该水可以暂时和局部削弱天然土壤微生物组,以实现更好的建立和改善接种AMF的好处。此外,已经表明,PTW可以对特定的有益微生物产生直接刺激作用,从而导致随后对作物性能的影响。目标
土壤微生物和酶通过促进土壤骨料形成和稳定性以及参与SOC循环和积累来在土壤有机碳(SOC)隔离中起关键作用。然而,土壤微生物和酶充当促进快速城市化过程中SOC动态变化的介体的影响尚不清楚。因此,本研究选择了中国南昌市(505 km 2)的建设区域,作为研究区域。采样调查,以区分不同的城市化水平。使用土壤微生物群落和酶活性分析了城市化过程中不同聚集体的动态变化的驱动因素。结果表明,随着城市化强度的增加,SOC含量和股票都显着下降(p <0.05)。在0.25–1 mM的聚集体中观察到最高的SOC股票和贡献率,它们受到城市化的显着影响(p <0.05)。此外,革兰氏阳性细菌(G+)和放线症的生物量以及低腹膜化区域中N-乙酰基葡萄糖氨基酶和酸性磷酸酶(AP)的活性显着高于高腹化区域(P <0.05)。soc与真菌,羊膜霉菌真菌,G+,革兰氏阴性菌,静脉肌动症,原生代,β-1,4-葡萄糖苷酶,N-乙酰基果糖酰胺酶,AP,catalase和Catalase和Catalase和Catalase。与土壤酶相比,土壤微生物在SOC固结中表现出更大的作用(22.7%)。 这些与土壤酶相比,土壤微生物在SOC固结中表现出更大的作用(22.7%)。这些此外,结构方程模型表明,城市化可以直接或间接导致骨料SOC的降低,从而改变土壤的物理化学特性并影响微生物和酶动力学。但是,较大的植被特征索引减轻了城市化对SOC的负面影响。总体而言,城市化对土壤碳储存产生了负面影响。将来,重要的是考虑着专注于改善土壤养分,维持土壤结构,保护现有城市树木并增强植物多样性的策略。
摘要:问题背景:传统的蚯蚓堆肥可能无法为某些园艺作物提供理想的营养平衡。当蚯蚓堆肥批次的营养含量不同时,预测作物的表现可能具有挑战性。传统的蚯蚓堆肥可能不一定包含足够广泛的微生物来支持强劲的植物生长并有效抵御土壤传播的疾病。用于园艺的作物有特定的营养需求,更容易受到病虫害的侵害。现有的蚯蚓堆肥生物强化领域强调了木霉菌和其他有益微生物在提高这种有机肥料效力方面发挥的关键作用。蚯蚓堆肥是蚯蚓介导的有机废物分解产生的营养丰富的副产品,对土壤肥力和植物营养有重大贡献。然而,它通常缺乏适当的营养平衡。蚯蚓堆肥中的木霉菌和其他有益细菌可以增强营养摄入,促进植物茁壮成长,增强对病虫害的抵抗力。微生物增强了作物的营养生物强化,重点关注其对园艺作物吸收的影响。这项研究讨论了木霉如何刺激生长和溶解矿物质,从而增加植物对矿物质的利用率。蚯蚓堆肥与不同微生物的生物强化的更广泛影响包括改善土壤健康、可持续农业和降低对合成肥料的依赖。不同微生物、蚯蚓堆肥之间的相互作用以及对营养密集型作物和可持续粮食生产的影响是巨大的。关键词:有益微生物、生物强化、田间表现、园艺作物、蚯蚓堆肥。介绍蚯蚓堆肥可以用有益微生物进行生物强化,以提高肥料的有效性。菌根真菌、植物促生根际细菌 (PGPR) 和其他有益微生物可以帮助改善营养摄入、促进植物发育并提高植物对病虫害的抵抗力 (Fasusi 等人,2021 年)。蚯蚓堆肥是蚯蚓分解有机物质时产生的有机肥料。它有助于提高土壤肥力和结构,是植物的重要营养来源(Thakur 等人,2021 年)。蚯蚓堆肥并不总是能提供适当的营养平衡和有益微生物,以实现最佳植物生长。经过生物强化的蚯蚓堆肥可提高作物产量和质量。研究表明,经过生物强化的蚯蚓堆肥可以增加植物高度,提高果实产量、大小和质量,并提高园艺作物的植物病原体抗性(Sharma 等人,2022 年)。使用有益微生物进行蚯蚓堆肥生物强化是一种有前途的可持续农业方法,可以帮助改善土壤健康,提高作物产量,并减少合成肥料和农药的使用(Rehman 等人,2023 年)。蚯蚓堆肥作为园艺作物生产系统中的土壤改良剂越来越受欢迎,因为它比传统肥料具有许多优势(Sindhu 等人,2020 年)。
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系
植物科学招募访客简介传记迈克尔·巴拉什(PLB) - 学士学位,圣路易斯华盛顿大学环境生物学(2024年)。我的本科研究包括分析恢复物种池中的偏见,分别是物种保守主义对降级的草原景观中种子招募的影响。过高的草原福尔布斯(Grairie Forbs)通过纯活重测试了标准化的招聘,并在阶乘设计中接受了羊膜菌根真菌接种和除草的治疗方法。作为博士学位。 MSU的学生,我有兴趣继续对恢复高度保守的草原物种的动态进行类似的研究,这些动态通常未能以与矩阵或杂草差的本地Forbs相当的速度招募,并计划结合社区生态学,土壤生态学和功能性特质生态学,以发展对系统的理解。 我对Lars Brudvig博士的研究小组特别感兴趣,并且很想与Drs交谈。 Carolyn Malmstrom,Chris Blackwood和Laura Sullivan。 帕特里克·贝尔(Patrick Bell)(PBGB -HRT) - MS,植物生物学,罗格斯(Rutgers)(2024),BS,生物学,化学和教育专业的未成年人,沃伦·威尔逊学院(Warren Wilson College)(2010年)。 我的研究研究了榛子树的物际,杂种和新颖的阿维拉纳菌质种质,这与低于冷冻的天数有关。 我希望在MSU的博士学位使用植物育种来改善年度粮食作物中的非生物应激性。 Douches,Thompson,Vanburen和Jiang教授正在做有趣的工作,我很想亲自与植物弹性研究所的成员见面。作为博士学位。 MSU的学生,我有兴趣继续对恢复高度保守的草原物种的动态进行类似的研究,这些动态通常未能以与矩阵或杂草差的本地Forbs相当的速度招募,并计划结合社区生态学,土壤生态学和功能性特质生态学,以发展对系统的理解。我对Lars Brudvig博士的研究小组特别感兴趣,并且很想与Drs交谈。Carolyn Malmstrom,Chris Blackwood和Laura Sullivan。帕特里克·贝尔(Patrick Bell)(PBGB -HRT) - MS,植物生物学,罗格斯(Rutgers)(2024),BS,生物学,化学和教育专业的未成年人,沃伦·威尔逊学院(Warren Wilson College)(2010年)。我的研究研究了榛子树的物际,杂种和新颖的阿维拉纳菌质种质,这与低于冷冻的天数有关。我希望在MSU的博士学位使用植物育种来改善年度粮食作物中的非生物应激性。Douches,Thompson,Vanburen和Jiang教授正在做有趣的工作,我很想亲自与植物弹性研究所的成员见面。Caroline Bendickson(PLB) - 学士学位,与数学小学的生物学和化学专业,阿拉巴马大学的亨茨维尔大学(预计2025年5月)。 在哈德森帕(Hudsonalpha)生物技术研究所的Alex Harkess博士实验室中,我领导了一个独立的本科研究项目,该项目使用Angiosperms353 Bait捕获了trillium属的基于分子的系统发育,从而导致了第一批作者手动。 我还合作,与美国校园树基因组倡议一起,在奥本大学为Toomer's Oak(Quercus Virginiana)组装新的参考基因组。 目前,我正在帮助优化新型的计算管道矫正器,以识别可能影响各种富有ext exioial Agiosperms的SDR的性别确定的推定的植物直系同源物。 在研究生院,我的目标是使用计算方法来处理广泛的遗传学和进化问题,例如对各种植物种类的过程的调节,包括基因表达和口腔发育,以及我对Erich Grotewold博士,David Grotewold博士,David David Lowry博士,Bob Vanburen博士和Andrea案的实验室特别感兴趣。 Alex Bray(PLP) - 我目前正在与爱荷华州立大学的遗传学和全球卫生界未成年人攻读微生物学学士学位。 我在植物病理学方面最相关的研究经验一直在达伦·穆勒(Daren Mueller)博士的领导下,在科特瓦农业学院的两次实习期间。 我对蒂莫西·迈尔斯(Timothy Miles)博士,马丁·奇尔弗斯(Martin Chilvers)博士,亚历杭德罗·罗哈斯(Alejandro Rojas),格雷戈里·博尼托(Gregory Bonito),乔治·桑登(George Sundin)博士和米歇尔·赫林(Michelle Hulin)博士进行的研究特别感兴趣。Caroline Bendickson(PLB) - 学士学位,与数学小学的生物学和化学专业,阿拉巴马大学的亨茨维尔大学(预计2025年5月)。在哈德森帕(Hudsonalpha)生物技术研究所的Alex Harkess博士实验室中,我领导了一个独立的本科研究项目,该项目使用Angiosperms353 Bait捕获了trillium属的基于分子的系统发育,从而导致了第一批作者手动。我还合作,与美国校园树基因组倡议一起,在奥本大学为Toomer's Oak(Quercus Virginiana)组装新的参考基因组。目前,我正在帮助优化新型的计算管道矫正器,以识别可能影响各种富有ext exioial Agiosperms的SDR的性别确定的推定的植物直系同源物。在研究生院,我的目标是使用计算方法来处理广泛的遗传学和进化问题,例如对各种植物种类的过程的调节,包括基因表达和口腔发育,以及我对Erich Grotewold博士,David Grotewold博士,David David Lowry博士,Bob Vanburen博士和Andrea案的实验室特别感兴趣。Alex Bray(PLP) - 我目前正在与爱荷华州立大学的遗传学和全球卫生界未成年人攻读微生物学学士学位。我在植物病理学方面最相关的研究经验一直在达伦·穆勒(Daren Mueller)博士的领导下,在科特瓦农业学院的两次实习期间。我对蒂莫西·迈尔斯(Timothy Miles)博士,马丁·奇尔弗斯(Martin Chilvers)博士,亚历杭德罗·罗哈斯(Alejandro Rojas),格雷戈里·博尼托(Gregory Bonito),乔治·桑登(George Sundin)博士和米歇尔·赫林(Michelle Hulin)博士进行的研究特别感兴趣。我从事的项目包括优化核酸提取方法,以改善真菌病原体检测,进行种子健康质量测定法,以根据杀菌剂处理,场所和存储条件以及筛选各种农作物组织来评估真菌内生菌频率,以识别用于疾病抗性的疾病抗性成分,以识别用于传输表达和Vector Cresementering和Vector Eromentering的潜在遗传成分。作为密歇根州立大学的潜在博士生,我有兴趣在综合管理实践的背景下推进病原体检测技术和分析疾病的抗性。
