摘要:心肌梗塞(MI)是心血管疾病死亡的主要原因。快速诊断和有效治疗对于改善患者预后至关重要。尽管当前的诊断和治疗方法已经取得了重大进展,但它们仍然面临诸如缺血 - 再灌注损伤,微循环疾病,不良心脏重塑和炎症反应等挑战。这些问题强调了迫切需要创新解决方案。纳米材料具有多种类型,出色的理化特性,生物相容性和靶向能力,在应对这些挑战方面具有有希望的潜力。纳米技术的进步越来越多地引起人们对纳米材料在诊断和治疗心肌梗塞中的应用。我们总结了心肌梗塞的病理生理机制和分期。我们系统地回顾了纳米材料在MI诊断中的应用,包括检测生物标志物和成像技术以及在MI治疗中,包括抗氧化作用,抗氧化剂应激,抗纤维化,纤维化的抑制,促进血管生成以及心脏传导修复。我们分析了现有的挑战,并提供了对未来研究方向和潜在解决方案的见解。具体来说,我们讨论了对严格的安全评估,长期疗效研究的需求,以及将实验室发现转化为临床实践的强大策略的发展。总而言之,纳米技术作为诊断和治疗心肌梗塞的新策略具有重要的希望。它可以增强临床结果并彻底改变患者护理的潜力,这是在现实世界中使用实际应用的令人兴奋的研究领域。关键字:心肌梗塞,纳米材料,纳米颗粒,诊断和治疗
摘要:石墨烯/硅异径光电探测器由于高表面状态和界面处的低屏障高度而遭受高黑暗电流,这限制了它们的应用。在这项研究中,我们通过磁控溅射引入了HFO X界面层以解决此问题。使用这种新结构,在偏置电压为-2 V的情况下,暗电流降低了六次。在460 nm的照明下,响应性为0.228a/w,检测率为1.15×10 11 cmHz 1/2 w -1,噪声等效的功率为8.75×10-5 pw/hz 1/2/2/2/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/hz 1/2/2/2/hz 1/2/2/hz 1/2/2/hz 1/2/hz 1/2/2/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/2/hz 1/2/hz 1/2/hz 1/2/hz 1/2/hz。此外,HFO X界面层中的氧空位为电荷载体提供了导电通道,导致光电流增长2.03倍,外部量子效率为76.5%。光电探测器在低偏置电压下保持良好的光响应能力。这项工作展示了HFO X膜作为界面层材料的出色性能,并为高性能光电探测器提供了新的解决方案,以及提高太阳能电池光伏转换效率的新途径。
摘要。随着对新能源需求的逐渐增加,近年来新型的储能设备已经迅速发展。目前,由锂离子电池领导的新能量电池已开始在汽车场中使用。但是,锂离子电池遇到了低能密度,充电速率缓慢和寿命短的问题。为了减轻和解决锂离子电池的缺点,研究人员已经开始开发超级电容器。本文首先对一些通用的能源存储设备进行了分类并进行了比较,得出结论,超级电容器在充电率和稳定性方面具有显着优势。然后,基于纳米材料的尺寸,它对超级电容器中使用的电极材料进行了分类和比较,讨论了使用1D,2D和1D-2D组合材料构造电极的三种方法。通过分类,比较和讨论,它最终得出结论,在毫米尺度的结构底物上种植纳米材料可以有效地提高材料特定的表面积和稳定性,从而大大提高了超级电容器的性能。
化学气相沉积 (CVD) 是制造真正单层石墨烯 (SLG) 的工艺。Versarien 的子公司 Versarien Korea Ltd.(韩国)在洁净室环境中使用快速热 CVD 工艺 (RT-CVD) 制造 SLG。石墨烯的合成和层压、转移和堆叠均在 1000 级(ISO 6)实验室中进行,而湿化学蚀刻和所有石墨烯特性分析均在 10000 级(ISO 7)实验室进行。我们的标准产品包括尺寸最大为 200 x 200 毫米的铜箔上的 SLG(CVD-101)、转移到 SiO 2 /Si 晶片上的 SLG(CVD-201)或转移到 PET 基板上的 SLG(CVD-301)。我们还提供生产多层堆叠石墨烯的服务,并将石墨烯转移到客户选择的其他基板上。
药物输送系统需要改进多种药物化合物的药理特性,开发创新和高效的药物。在当前情况下,有大量用于治疗人类疾病的药物输送系统。为了实现这一目标,已经设计出几种药物输送技术,并正在尝试用于鼻腔和肺部输送。智能药物输送系统的性能一直在得到增强,以实现有效的治疗作用,同时最大限度地减少与之相关的负面副作用。地球上最常见的元素之一是碳及其同素异形体改性碳纳米管和石墨烯基纳米材料。这些碳纳米结构可以设计成更可靠地帮助输送或靶向药物,以及创新治疗方法。碳纳米结构还可用于治疗癌症和开发新的癌症诊断方法药物。这些方法预计将有助于将分子成像与化学疗法相结合进行诊断。本文重点介绍了药物输送系统、纳米粒子以及碳基纳米粒子(如碳纳米管、石墨烯、纳米金刚石、石墨烯量子点和富勒烯)对研究人员的作用。
工程纳米材料的出现已为包括医疗保健,工程,制造业,航空航天,建筑,汽车和其他包括医疗保健,工程,制造业,航空航天等新型应用打开了大门。纳米材料的较大表面体积比非常适合靶向功能和感应。化学传感器和生物传感器的特异性和灵敏度可以通过工程纳米材料形状,大小,组成和表面化学的变化来定制。纳米材料生物传感器在医疗保健诊断,食物新鲜度和生物处理等领域都有应用。属于此类别的材料,包括金属,金属氧化物,碳纳米管,2D材料,聚合物,蛋白质或纳米复合材料,可以具有多种组成。化学传感器可用于检测气体和液体,以应用环境保护,工业自动化和安全性。本期特刊涵盖了此类材料的各个方面,从解释材料的工作原理的理论考虑到其综合,表征和应用。
会议:纳米科学与技术、纳米材料与纳米技术、材料科学与工程、纳米医学与生命科学、纳米器件与纳米传感器、纳米复合材料、纳米材料基础与特性、纳米粒子、纳米医学与生命科学