通过运输氧化/还原形式的谷胱甘肽及其药物偶联物来改变细胞的氧化还原状态;并且与癌症的不良临床结果(例如预后不良)密切相关。4因此,MRP1 是耐药癌细胞的“致命弱点”之一。5越来越多的证据表明,通过基因沉默方法下调 MRP1 基因可以逆转 MRP1 介导的耐药性。6例如,已发现成簇的规律间隔的短回文重复相关蛋白 9 (CRISPR-Cas9) 技术可以逆转由 ATP 结合盒 (ABC) 转运蛋白介导的 MDR,由于其设计简单、靶区域灵活、编辑效率更高和多路复用,其结果明显高于其他基因编辑技术。 7 – 10 尽管取得了巨大进展,但大多数 CRISPR-Cas9 系统仍然存在一些棘手的问题,包括非靶标基因组改变和基因毒性、Cas9 特异性 T 细胞的潜在免疫风险以及不令人满意的靶向递送。8 为了应对这一挑战,RNA 引导的 VI 型 Cas 蛋白 CRISPR-Cas13d 已被证实可在不改变基因组的情况下敲低靶基因。11,12 重要的是,与 Cas9 蛋白相比,
用葡萄糖共转运蛋白2(SGLT2)抑制剂治疗慢性肾脏疾病的患者可降低肾风险,而不是血糖浓度和血压的变化,而不是肾脏风险。然而,尚不清楚负责该SGLT2抑制剂诱导的肾脏保护作用的确切机制。我们先前已经表明,SGLT2抑制剂会诱导降压神经活性降低,这与瞬时鼻尿有关。此外,用SGLT2抑制剂治疗通过在肾小管中产生血管内皮生长因子A来改善肾脏缺血。其他研究表明,酮体的产生,肾小球血流动力学的变化和肾内代谢变化以及降低肾小管间质葡萄糖水平引起的氧化应激的减少也可能参与SGLT2抑制剂的重新保护作用。在这篇综述中,我们总结了负责SGLT2抑制剂诱导的重期保护作用的机制,包括我们最近关于“美化样本反应”的假设,这是对饥饿的生物防御反应。
摘要:动物毒液的利用仍然是一个严重的医学和社会问题,尤其是在热带国家。另一方面,动物毒液被广泛用作新药开发的生物活性化合物的来源。动物毒液的许多衍生物已经在临床实践中使用。分析动物毒液的作用机理时,注意力通常集中在毒液的酶和肽(例如神经毒性,细胞毒性或出血作用)等肽的主要靶标上。在本综述中,我们想将注意动物毒液及其衍生物对DNA损伤和/或防止DNA损伤的保护的“隐藏”影响。生物碱和从海绵中分离的萜类化合物,例如avarol,ingenamine g或variolin b,表现出在体外结合DNA并产生DNA断裂的能力。trabectidin,从海喷发中分离出来,还结合并损坏DNA。对于从蜂蜜和黄蜂毒液中分离出的肽,例如乳腺癌,混血素和蜂毒素也可能采取类似的作用。然而,由果冻鱼的粗毒物,蝎子,蜘蛛和蛇产生的DNA病变是由于细胞膜损伤以及随后的氧化应激而产生的,而某些动物毒液或其成分产生了基因保护效应。当前的研究数据表明,在各种潜在治疗剂的开发中使用动物毒液及其成分的可能性;但是,应进一步研究在他们可能的临床使用途径之前,应进一步研究注射途径,分子靶标,作用机理,确切的剂量,可能的副作用和其他基本参数。
“技术企业家促进计划”(TePP)由印度政府科技部于 1998-99 年间推出。 TePP 之前由印度科学与工业研究部(DSIR)和科技部(DST)的技术信息、预测与评估委员会(TIFAC)联合运营。 自 2008 年 5 月起,目前由新德里 DSIR 独自运营。 TePP 计划于 2014 年以新名称“PRISM”重新推出。
单opellopellotant推进器是空间行业开发的最推进系统类型之一。该系统使用一种类型的推进剂,该推进剂在多孔培养基催化床上反应,以热气的形式产生推力。过去十年,绿色推进剂过氧化氢(H 2 O 2),也称为高测试过氧化氢(HTP),由于其低成本且易于储存为液体,被用作非常有毒且不环保的液态溶液。在当前的研究中,研究过氧化氢单op液推进器将在未来的卫星中进行应用。使用计算流体动力学(CFD)软件ANSYS Fluent进行数值模拟,以模拟推进器中过氧化氢的流体流动,并采用了有限体积方法来解决管理方程。物种传输模型使用涡流化学相互作用的涡流耗散模型(EDM)应用于单相反应模拟。基于局部热非平衡(LTNE)模型的数学方法用于描述通过包装床中的固体和流体阶段的传热,由相同的球形银颗粒组成。进行了几次模拟,可以最佳设计注射器,催化剂床的长度以及直径和喷嘴几何形状,以达到10N单op纤维素推进剂,其过氧化氢的浓度为87.5%。
E. 根据行政命令 13132 进行审查 F. 根据行政命令 12988 进行审查 G. 根据 1995 年《无资金授权改革法案》进行审查 H. 根据 1999 年《财政和一般政府拨款法案》进行审查 I. 根据行政命令 12630 进行审查 J. 根据 2001 年《财政和一般政府拨款法案》进行审查 K. 根据行政命令 13211 进行审查 L. 信息质量 VII. 公众参与
摘要 肮脏的空气或空气污染是我们面临的许多自然问题之一,有害空气污染问题非常具有代表性。如果空调不健康,就会干扰人体健康。根据世界污染最严重的国家指数,印度尼西亚是 10 个空气不健康或污染严重的国家之一,需要解决这些自然问题。本文旨在通过利用人工智能移动方法进行空气净化,特别是针对室外区域,找到解决方案并尽量减少更广泛的空气污染的影响。该系统的问题在于,它在大面积区域提供清洁空气,例如土地、公寓、办公室等,大多数人会走出家门,长时间呆在屋外。提供基于智能传感器的自动驾驶是本研究的一个优势,因为许多空气净化器与相同目的相关,但仅在小房间区域明确制造。没有移动方法,也没有使用三种主要功能公式方法的人工智能系统。使用机器的“智能移动”的第一个公式将赋予高度的人工智能。第二个方案是使用基于 Arduino 的微处理器进行净化,最后一个方案是人体探测器。之后,该系统可以安装在住宅区并提供更健康的空气,参考公式“你只看一次”(YOLO)的结构。所有系统都将提供性能,因为每个功能都集成在一起,以解释此工具移动的简易性。如果污染程度较低,此工具将前往该位置,反之亦然。此工具同时工作,可过滤空气污染并为人类提供健康的空气(人工智能)。借助此,研究人员尝试了几种方法来解决室外空气污染问题,并清洁污浊的空气以使其适合呼吸。关键词:空气污染、Arduino、人工智能、YOLO
高能电子和 X 射线光子与诸如卤化物钙钛矿之类的光束敏感半导体的相互作用对于表征和理解这些光电材料至关重要。使用可以在纳米尺度上研究物理特性的纳米探针衍射技术,研究了电子和 X 射线辐射与最先进的 (FA 0.79 MA 0.16 Cs 0.05 )Pb(I 0.83 Br 0.17 ) 3 混合卤化物钙钛矿薄膜 (FA,甲脒;MA,甲铵) 的相互作用,使用扫描电子衍射和同步加速器纳米 X 射线衍射技术跟踪局部晶体结构随通量的变化。从中识别出钙钛矿晶粒,在 200 e − Å − 2 的通量后,与 PbBr 2 相对应的额外反射作为晶体降解相出现。这些变化伴随着相邻大角度晶粒边界上小 PbI 2 晶体的形成、针孔的形成以及从四方到立方的相变。纳米 X 射线衍射中的光子辐照也会引起类似的降解途径,表明存在共同的潜在机制。这种方法探索了这些材料的辐射极限,并提供了纳米级降解途径的描述。解决大角度晶粒边界问题对于进一步提高卤化物多晶薄膜的稳定性至关重要,尤其是对于易受高能辐射影响的应用,例如空间光伏。