实现细胞内无载体货物输送的一种方法是通过施加强脉冲电场使细胞膜瞬时通透。施加电场时,立即产生的效应是在细胞膜上感应出跨膜电压(见词汇表)[1]。如果跨膜电压足够强,细胞膜就会暂时通透,从而允许外源货物进入细胞(图 1 A)。在文献中,术语“电穿孔”和“电通透”经常互换使用,以描述这一物理输送过程。在此过程中感应出的跨膜电压强度可导致细胞不可逆或可逆通透。当旨在输送可诱导细胞功能变化的分子(例如瞬时基因表达或基因组编辑)时,可逆细胞通透是首选。在整个评论中,我们使用术语电转移来描述通过应用电脉冲跨细胞膜(细胞外到细胞内,或反之亦然)的分子转移。
核酸疗法正在成为一类有前途的药物,在基因水平上为癌症提供独特的治疗选择。然而,核酸疗法的药物适用性受到其低稳定性、差的膜通透性和低生物利用度的根本限制,因此必须使用递送载体。已经开发了各种用于核酸疗法的递送载体。已建立的核酸递送系统 (NADS) 在体内的命运大大影响递送效率和治疗效果。NADS 的物理化学性质(例如大小、电荷、形状等)对于 NADS 与体内各种生物屏障的相互作用至关重要,从而决定了 NADS 在体内的命运。纳米颗粒 (NP) 尺寸是决定 NADS 的血液循环、分布、肿瘤积聚和细胞摄取的重要参数。本综述简要介绍了NADS在癌症治疗中的各种生物学屏障,重点讨论了运载载体的粒径对NADS在体内命运及其治疗效果的影响,为NADS的合理设计提供了新的见解。
宫颈癌是全球危害女性健康的第三大最常见的癌症,高风险的人乳头瘤病毒(HR-HPV)感染是全球宫颈癌的主要原因。鉴于HR-HPV感染的复发性,准确的筛选对于其控制至关重要。由于常用的聚合酶链反应(PCR)技术受专业设备和人员的限制,因此仍然非常需要HR-HPV的方便和超敏感检测方法。作为新的分子检测方法,基于核酸扩增的生物传感器具有高灵敏度,快速运行和可移植性的优势,这有助于农村和偏远地区的护理点测试。这篇综述总结了基于改进的PCR,LOOP介导的等热放大,重物组合聚合酶放大酶放大,杂交链反应,杂化链序列,催化的毛发蛋白和CRIS的系统,促进的核酸扩增策略,用于HR-HPV筛查,用于HR-HPV筛选。与微流体技术,侧流测定,电化学分析和其他感应技术结合使用,HR-HPV核酸生物传感器具有高吞吐量,短响应时间,高灵敏度和易于操作的优势。尽管仍然存在缺点,例如高成本和差的可重复性,但这种方法适用于对HR-HPV感染或宫颈癌的现场筛查,以及未来复杂环境和较差地区的辅助临床诊断。
strands”在DNA折纸中,接吻环和RNA折纸中的其他连接器图案)。两种方法都已用于设计各种2D形状和3D结构(5,6)。大多数当前的3D折纸设计遵循在彼此顶部包装几层二维螺旋或螺旋束的方法,和/或弯曲的螺旋束如(7,8)中最初建议。3D设计的替代路径是创建一个线框结构,该结构仅包含3D模型的边界边缘和顶点。在这个方向上有几个值得注意的前虫前旅行(9,10),但是随着柔性且坚固的折纸技术的发展,它大多开始获得追随者(6,11)。与螺旋装箱相比,线框设计的一些优势包括使用链的经济,这允许建造较大的结构,并在低盐条件下更好地折叠。一些挑战是结构的刚性较低,尤其是对于大型的单螺旋边缘设计(可以通过使用多螺旋边缘来减轻,以增加链的使用来缓解)和大型复杂设计的产量低。已经存在几种核酸纳米结构设计工具(8、12、13、14、15、16、17、18、19、20、21)。Most of these however address helix-packing designs, with the more recent ones oriented towards wireframe structures including vHelix (14), DAEDALUS (15) and ATHENA (18) for 3D DNA wireframes, Sterna (20) for single-stranded 3D RNA wireframes and PyDAEDALUS (21) for 3D RNA/DNA hybrid wireframes.这些工具主要支持一种特定的设计方法,每个工具也都处于离线状态,需要一个单独的过程来安装工具及其辅助库,有时可能很难找到或在最坏的情况下弃用。
受到弗莱明(Fleming)在模具成功的启发,我们开始了……使用数千种真菌的培养汤……经过3800株真菌,我们发现霉菌的培养基表现出有效的抑制活性。活跃原理被证明是一种已知物质-Citrinin
病原体被定义为一种传染性微生物或病原体,其中病毒和细菌是临床上最常见的(Casadevall and Pirofski,2002)。这些病原体具有高度可进化性、致病性和迅速传播性,对人类健康构成严重威胁。微生物控制计划越来越多地被全社会采用,以降低消费者感染的风险。细菌培养法因其在常见实验室实验中的稳健性而被广泛认为是病原体检测的“金标准”。然而,它具有耗时、费力和检测效率低等缺点,这严重阻碍了其在临床上的广泛使用。另一种方法是免疫检测,它基于特异性抗体对抗原的识别和结合(Kohl and Ascoli,2017)。虽然它在检测病原微生物方面具有速度快、简单、特异性强等优势,但需要较长的抗体制备时间,检测灵敏度也较低。核酸检测技术与上述方法不同,能够同时满足病原体检测的准确性、快速性和灵敏度的要求,在保障人类安全方面更显优越性。
欧洲食品安全局(EFSA)EPA(环境保护局)急性暴露准则水平(S)(AEGL(AEGL)(AEGL)(AEGL(S))计划(NICNAS)NIOSH(国家职业安全与健康研究所)国家医学图书馆的ChemID Plus(NLM CIP)国家医学图书馆PubMed数据库(NLM PubMed)国家毒理学计划(NTP)新西兰化学分类和信息数据库(CCID)的经济合作和发展环境和安全组织的新西兰化学分类和信息数据库组织(CCID)组织,用于体积,健康组织和安全组织,并制造经济性组织和安全性组织,以及安全性组织和安全性组织,以及安全组织和安全性组织,并提供了经济性和安全性组织,并提供了经济和安全性组织,并且合作与开发筛查信息数据集世界卫生组织
抽象目的:壁虱是许多病原体的媒介,引起了致命后果的疾病,从单个tick中检测这种病原体至关重要。分子方法(例如聚合酶链反应(PCR))提供了这种可能性。目前,涉及液氮的繁琐方法,用手术刀切割tick虫以及汇总的tick虫已在全球范围内使用。我们的目标是开发一种可靠且快速的方法,从室温下单滴核酸(DNA/RNA)获得核酸(DNA/RNA),以检测各种病原体。方法:我们开发了一种机械粉碎方法,并从一个字母中的邮政或Currier服务在室温下从单个tick中隔离的微型柱核酸隔离。PCR检测是用于伯氏伯氏菌和tick传播脑炎病毒的例子。结果:该方法已成功地用于从单个壁虱中分离核酸,后来用于在17个单滴水样本上检测B. burgdorferi和Tick传播脑炎病毒,作为示例,但在过去的18年中,该方法用于来自德国的250多个tick虫。光谱值表明在分离过程中存在足够的DNA和RNA的产率(每滴度最高900 µg/ml)。结论:这可能是关于一个单个tick病例的第一份报告,这些报告是在室温下以邮政服务的字母发送的,用于隔离带有迷你柱试剂盒的核酸,后来用于PCR检测各种病原体。这种廉价且简单的方法可以在全球任何实验室中用于监测tick传播病原体的存在。关键字:tick,tick虫病原体,核酸隔离,Borrelia burgdorferi,聚合酶链反应
摘要:化学家现在已经合成了在标准Terran DNA中发现的四种标准核苷酸(鸟嘌呤,腺嘌呤,胞嘧啶和胸腺嘧啶)中添加核苷酸的新型DNA。今天在分子诊断中使用了这种“人为扩展的遗传信息系统”;支持定向进化以创建医学上有用的受体,配体和催化剂;并探索与生命早期演变有关的问题。进一步的应用受到无法直接序列DNA含有非标准核苷酸的限制。纳米孔测序非常适合此目的,因为它不需要酶促合成,扩增或核苷酸修饰。在这里,我们采取了第一步来实现8个字母“ Hachimoji”的纳米孔测序,通过使用MSPA(smegmacterium smegmatis porin a)纳米孔评估其纳米孔信号范围,扩展了DNA字母。我们发现Hachimoji DNA在纳米孔测序中表现出比单独标准DNA更广泛的信号范围,并且Hachimoji单碱基取代是可以高度置信的。由于纳米孔测序依赖于分子电机来控制DNA的运动,因此我们通过跟踪Hachimoji DNA的单个Hel308分子的易位来评估HACHIMOJI DNA的易位,从而评估了HACHIMOJI DNA的hel308运动酶与非标准核苷酸的兼容性,从而监测了酶基因酶的eNzeme disnzeme disnzeme disna。我们发现HEL308与Hachimoji DNA兼容,但是与N-糖苷相比,在C-糖苷核苷上行走时会更频繁地分离。c-糖化核苷通过HEL308中的特定位点会诱导更高的解离可能性。这强调了优化纳米孔测序电机以处理不同的糖苷键的需求。它还可以为未来的替代DNA系统的设计提供信息,这些系统可以与现有电动机和毛孔进行测序。
在19世纪,格雷戈尔·门德尔(Gregor Mendel)确定了可遗传的单元,如今被称为基因,并为新兴治疗形式奠定了一种称为基因疗法(GT)的形式。随后,从对双链DNA的描述到人类基因组项目的完成,GT已成为多种基于基因疾病的强大治疗选择。gt涉及细胞内引入核酸(NA) - 材料,用于改变宿主蛋白表达以治愈患病状态。但是,尽管正在进行近3,000次临床试验(完成或正在进行),但GT仍仅在实验阶段仍然存在。使它无法实现其真正潜力的主要挑战是将靶基因/NA传递到细胞或组织中(Ginn等,2018; Pan等,2021)。需要一个被称为“矢量”的输送系统才能在细胞内携带此类货物。传统上,由于较高的转染效率,使用了病毒或基于病毒的系统。然而,由于免疫原性,细胞毒性,非靶向插入,不足的长期研究以及非常高的成本,临床应用受到限制。在这种情况下,非病毒载体正在出现,随着绕过病毒系统致病性的更安全替代方案的相关性越来越高。基于脂质的纳米颗粒和阳离子聚合物代表有助于NA递送的常规化学物质。这种纳米/微系统是临床试验中唯一的非病毒载体,但仍因其在血清中汇总的趋势而阻碍(Pan等,2021)。在有希望的票据中,在综合共同疫苗的前所未有的全球努力中,成功实施的实施最近得到了强调。其中一些使用脂质纳米颗粒来影响疫苗本身的总体免疫调节特性,除了货物输送和保护外(Guerrini等,2022)。然而,对于其他疾病和治疗学中的可比临床应用,临床前研究阶段,类似材料,例如脂质体,poly(2-(N,N,N-二甲基氨基)甲基丙烯酸乙酯)或聚(L-赖氨酸)或聚(l-赖氨酸)仍然因降低和矛盾的结果而受到矛盾的结果,并保持了偏见,并且伴随着extragitiation,并且会导致疾病的矛盾性,并且伴随着extragitiation and extrications Hemaggrutation and hemaggglutation decornitiation and Hemaggglutiation and。 Escape(Poddar等,2019a)。因此,转染效率,货物保护和全身聚集的挑战是需要进一步改善该领域的关键领域。但是,涉及输送系统的研究文章不到1%,专注于非病毒选择。这种松弛正在拾起,作为多种新颖策略,例如独特的材料,配方和