摘要。通过互补感应方式整合各种表示形式对于自主驾驶中的强大场景解释至关重要。近年来,融合视觉和范围数据的深度学习体系结构具有先进的2D和3D对象检测。但是,这些方式在不利的天气或照明条件下通常会降解,从而导致性能下降。虽然已经开发了域适应性甲基元素来弥合源域和目标域之间的缝隙,但由于源和目标域之间的固有差异,它们通常会缺乏。此差异可以在数据的不同分布和不同特征空间的不同分布中表现出来。本文介绍了一个全面的域自适应对象检测框架。通过深度转移学习开发,该框架旨在从标记的透明天气数据中稳健地概括到无标记的不良天气条件,从而增强了基于深度学习的对象检测模型的性能。创新的斑块熵融合模块(PEFM)是我们方法的核心,该方法动态整合了sens-sor数据,强调关键信息并最大程度地减少了背景干扰。这进一步补充了一种新型的加权决策模块(WDM),该模块(WDM)根据其在特定环境条件下的功效来调整不同传感器的贡献,从而优化了检测准确性。此外,我们在转移学习过程中集成了域对齐损失,以确保有效的域适应性通过将特征图差异定于清晰和不利天气数据集之间的差异。我们评估了不同数据集的模型,包括Exdark(单峰),CityScapes(单峰)和密集(Mul-timodal),在我们评估的时间点,它在所有数据集中排在所有数据集中。
模拟在粒子和核物理学中起重要作用。它被广泛用于DECOTER设计和实验数据和理论模型之间的比较。在特定上,模拟依赖于蒙特卡洛方法,需要显着的计算资源。尤其是,这种方法不能扩展以满足高光度大型强子对撞机(HL-LHC)运行期间预期的大量数据所产生的增长需求。使用众所周知的仿真软件Geant4捕获的粒子碰撞和相互作用的详细模拟需要数十亿个CPU小时,构成了LHC实验的一半以上的计算源[1,2]。更具体地说,对热量表中粒子阵雨的详细模拟是计算最高的步骤。已经开发了利用重复使用先前计算或测量物理量的思想的模拟方法,以减少计算时间[3,4]。这些方法从专门进行到单独的实验中,尽管它们比完整的模拟更快,但它们的速度不够快或缺乏准确性。因此,粒子物理社区需要使用新的更快的模拟方法来建模实验。模拟热量计响应的可能方法之一是使用深度学习技术。,特别是最近的工作[5]提供了证据,表明可以使用生成性副本网络来效果模拟粒子阵雨。虽然实现了超过100 000倍的速度,但设置非常简单,因为输入粒子为
难题长期以来一直被认为是吸引人的精神挑战,这些挑战在整个历史上都吸引了个人。他们提供休闲和转移机会,并刺激认知技能,例如批判性思维和解决问题[3]。此外,由于与数学和计算理论的关键问题的紧密联系,在过去的二十年中,拼图的理论方面引起了科学界的重大兴趣,从而对其数学和计算方面进行了广泛的研究(参见[4-6],请参阅[4-6]的广泛研究)。Furthermore, a variety of pencil-and-paper-based puzzles have been confirmed NP-complete, including but not limited to (in chronological order): Nonogram (1996) [7], Sudoku (2003) [8], Nurikabe (2004) [9], Heyawake (2007) [10], Hashiwokakero (2009) [11], Kurodoko (2012) [12], Shikaku and Ripple Effect(2013)[13],Yosenabe(2014)[14],Fillmat(2015)[15],Dosun-Fuwari(2018)[16] [16],Tatamibari(2020)[17] [17],Kurotto和Juosan和Juosan(2020)[18] [2]。suguru难题的NP完整性意味着有一个多项式时间验证过程,用于检查任意配置是否是Suguru实例的解决方案。但是,解决Suguru拼图仍然是指数的任务,因为对于任何NP完整问题,都不存在已知的多项式时间算法。此外,用于解决Suguru难题的正式算法研究相对有限,因为它直到最近才证明NP完整。本文讨论了一种基本方法,即回溯方法,通过修剪优化增强。对基本算法方法(例如详尽的搜索和修剪和搜索)的研究(这些方法都采用了本文中使用的方法的类似方法)是在Yin-Yang [21]和Tatamibari等难题上进行的。更先进的技术也可用于求解NP完整的难题,例如SAT求解器[23,24]和深度学习方法[25]。这种方法证明了其解决任何Suguru拼图的能力,需要解决的解决方案在拼图大小和提示数方面增加了阶乘因素。此外,这个最终项目还探索了一种使用基于SAT的方法来解决Suguru难题的替代方法。除此之外,本文
摘要...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................
数学常数(例如π,E和φ)长期以来一直被认为是天然系统中几何,生长和自组织的基础。然而,常规数学将这些数字视为独立领域的新兴特性(几何,微积分和数字理论),而不是统一框架内的内在共振状态。动态新兴系统(代码)的手性提出,这些常数不是任意的,而是在主要驱动的共振字段中作为必要的相锁定结构出现。
Krauss,T。D.*; Bren,K。L.*; Matson,E。M*。 “通过多氧化烷层簇从CDSE量子点中增强光催化氢的活性”。 Commun。,2020,56,8762-8765。Krauss,T。D.*; Bren,K。L.*; Matson,E。M*。“通过多氧化烷层簇从CDSE量子点中增强光催化氢的活性”。Commun。,2020,56,8762-8765。
通过我目前担任内政部,监狱和缓刑部高级从业人员的工作,我对人类岛立法有很好的理解和良好的知识。此外,我还有许多可转移的技能,可以帮助我担任立法委员会成员的任何职位。我经常在人类法院公开发表讲话,司法机构在场。在这些时代期间,也是坐在法院公共画廊以及出席的公共/地方社区的成员中,是当地媒体的各种成员。在公开讲话时,我必须始终保持专业,并且意识到会有潜在的挑战,否则可能需要进一步清楚我在公开法庭上所说的任何事情。此类挑战或要求进一步的信息可能来自辩护和/或起诉倡导者,甚至可能来自司法机构的成员。能够公开,诚实,准确,同时思考我的脚是立法委员会内部角色的资产。此技能集是在缓刑服务中不可或缺的工作,他们经常以最强大,最强大的条件来表达自己的决策。我不反对健康的辩论,在受到挑战和挑战他人方面。我所获得的技能归因于我与之合作的客户,就像他们在角色中的专业人员一样。我带来了良好的组织和时间管理技能。我有能力保持灵活的工作模式和小时。我非常习惯于按时完成紧迫的截止日期和时间表,同时兼顾竞争优先级。我具有良好的沟通和听力技巧,我对持有良好道德指南针的对与错有深刻的理解。我定期为曼岛法院和曼假释委员会准备各种书面报告。这些报告必须在事实上是正确的,清晰的,易于阅读和理解的。每天我经常在我目前的就业中提及人类立法,并且精通理解和解释人类立法
扩散概率模型(DDPM)[39,40],通过开发合适的3D表示,例如,体积网格[50],点云[3,53],三角形网格[24,32],隐式含量[24,32],隐式代表[12,28,36,36,36,36,56,36,56,36,36,36,56)。但是,这些生成模型的一个共同主题是匹配由训练数据定义的经验分布以及从潜在空间的先前分布中得出的诱导分布。这些方法在3D域中对下游应用程序至关重要的3D域中没有明确模型。考虑使用隐式形状代表的许多状态形状发生器。合成形状通常具有断开的作品,并具有其他物理稳定性和几何可行性的问题。现有技术的一个主要问题是,他们只看到培训实例,这是一组非常稀疏的样本。但是,它们没有对合成实例的几何和物理特性进行建模。这种问题不容易通过开发合适的神经代表来解决。随着人造形状具有多种拓扑结构,在可以对不同拓扑结构建模的代表下执行这些属性,例如隐式表面和点云仍然非常具有挑战性。在本文中,我们介绍了一种名为GPLD3D的新颖方法,该方法极大地增强了合成形状的几何学性和物理稳定性。考虑一个预先训练的生成模型,该模型将潜在空间映射到形状空间。我们将潜在扩散范式[12,34,36,56]证明是一种最先进的形状基因产生模型。与训练一个扩散模型不同,该模型将潜在空间的高斯分布映射到由训练形状的潜在代码定义的经验分布,我们介绍了一个潜在代码的优质检查器,以定义潜在空间的连续正规化分布。此质量检查器集成了一个学到的功能,该功能量化了合成形状的几何可行性评分以及量化其物理稳定性评分的刚度ma-Trix的光谱特性。我们展示了如何扩展最新的扩散框架EDM [20],以整合数据分布和学习质量的denoising网络的质量检查器。关键贡献是一种原则性的方法,它决定了数据分散的损失条款与不同噪声水平的质量检查器之间的权衡参数。我们已经评估了shapenet-v2上GPLD3D的性能[6]。实验结果表明,在多个指标上,GPLD3D显着优于最先进的形状发生器。我们还提出了一项消融研究,以证明合并质量检查器并优化训练损失的超参数的重要性。